Citation: | XU Jinhui, YUE Hongmei, LIU Miaomiao, LI Yating, WU Xingdong, ZHU Haobin. Role of Neutrophil Extracellular Traps in Chronic Obstructive Pulmonary Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 153-159. DOI: 10.12290/xhyxzz.2023-0396 |
[1] |
Vachon B, Giasson G, Gaboury I, et al. Challenges and strategies for improving COPD primary care services in Quebec: results of the experience of the COMPAS+ quality improvement collaborative[J]. Int J Chron Obstruct Pulmon Dis, 2022, 17: 259-272. DOI: 10.2147/COPD.S341905
|
[2] |
Yang Y W, Cao Y, Han X B, et al. Revealing EXPH5 as a potential diagnostic gene biomarker of the late stage of COPD based on machine learning analysis[J]. Comput Biol Med, 2023, 154: 106621. DOI: 10.1016/j.compbiomed.2023.106621
|
[3] |
Kotlyarov S. Involvement of the innate immune system in the pathogenesis of chronic obstructive pulmonary disease[J]. Int J Mol Sci, 2022, 23(2): 985. DOI: 10.3390/ijms23020985
|
[4] |
Jo A, Kim D W. Neutrophil extracellular traps in airway diseases: pathological roles and therapeutic implications[J]. Int J Mol Sci, 2023, 24(5): 5034. DOI: 10.3390/ijms24055034
|
[5] |
Twaddell S H, Baines K J, Grainge C, et al. The emerging role of neutrophil extracellular traps in respiratory disease[J]. Chest, 2019, 156(4): 774-782. DOI: 10.1016/j.chest.2019.06.012
|
[6] |
Wang K, Liao Y, Li X O, et al. Inhibition of neutrophil elastase prevents cigarette smoke exposure-induced formation of neutrophil extracellular traps and improves lung function in a mouse model of chronic obstructive pulmonary disease[J]. Int Immunopharmacol, 2023, 114: 109537. DOI: 10.1016/j.intimp.2022.109537
|
[7] |
Guo P, Li R, Piao T H, et al. Pathological mechanism and targeted drugs of COPD[J]. Int J Chron Obstruct Pulmon Dis, 2022, 17: 1565-1575. DOI: 10.2147/COPD.S366126
|
[8] |
Lee J, Jang J, Park S M, et al. An update on the role of Nrf2 in respiratory disease: molecular mechanisms and therapeutic approaches[J]. Int J Mol Sci, 2021, 22(16): 8406. DOI: 10.3390/ijms22168406
|
[9] |
Barnes P J. Oxidative stress-based therapeutics in COPD[J]. Redox Biol, 2020, 33: 101544. DOI: 10.1016/j.redox.2020.101544
|
[10] |
Zhang X Y, Li W, Zhang J R, et al. Roles of sirtuin family members in chronic obstructive pulmonary disease[J]. Respir Res, 2022, 23(1): 66. DOI: 10.1186/s12931-022-01986-y
|
[11] |
Birch J, Barnes P J, Passos J F. Mitochondria, telomeres and cell senescence: implications for lung ageing and disease[J]. Pharmacol Ther, 2018, 183: 34-49. DOI: 10.1016/j.pharmthera.2017.10.005
|
[12] |
Mano Y, Tsukamoto M, Wang K Y, et al. Oxidative stress causes muscle structural alterations via p38 MAPK signaling in COPD mouse model[J]. J Bone Miner Metab, 2022, 40(6): 927-939. DOI: 10.1007/s00774-022-01371-1
|
[13] |
Moradi S, Jarrahi E, Ahmadi A, et al. PI3K signalling in chronic obstructive pulmonary disease and opportunities for therapy[J]. J Pathol, 2021, 254(5): 505-518. DOI: 10.1002/path.5696
|
[14] |
Li Y, Wang W, Yang F, et al. The regulatory roles of neutrophils in adaptive immunity[J]. Cell Commun Signal, 2019, 17(1): 147. DOI: 10.1186/s12964-019-0471-y
|
[15] |
Guillon A, Jouan Y, Brea D, et al. Neutrophil proteases alter the interleukin-22-receptor-dependent lung antimicro-bial defence[J]. Eur Respir J, 2015, 46(3): 771-782. DOI: 10.1183/09031936.00215114
|
[16] |
Gharib S A, Manicone A M, Parks W C. Matrix metalloproteinases in emphysema[J]. Matrix Biol, 2018, 73: 34-51. DOI: 10.1016/j.matbio.2018.01.018
|
[17] |
Strange C. Alpha-1 antitrypsin deficiency associated COPD[J]. Clin Chest Med, 2020, 41(3): 339-345. DOI: 10.1016/j.ccm.2020.05.003
|
[18] |
Arezina R, Chen T, Wang D. Conventional, complementary and alternative medicines: mechanistic insights into therapeutic landscape of chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2023, 18: 447-457. DOI: 10.2147/COPD.S393540
|
[19] |
Hikichi M, Mizumura K, Maruoka S, et al. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke[J]. J Thorac Dis, 2019, 11(Suppl 17): S2129-S2140.
|
[20] |
钱鸳鸳, 余钊. 中性粒细胞胞外网状陷阱(NETs) 在肺栓塞中的研究进展[J]. 浙江中西医结合杂志, 2023, 33(2): 191-193.
Y Y, Yu Z. Research progress on neutrophil extracellular network traps (NETs) in pulmonary embolism[J]. Zhejiang J Integr Tradit Chin West Med, 2023, 33(2): 191-193.
|
[21] |
Papayannopoulos V. Neutrophil extracellular traps in immu-nity and disease[J]. Nat Rev Immunol, 2018, 18(2): 134-147. DOI: 10.1038/nri.2017.105
|
[22] |
Zhao Z Y, Pan Z R, Zhang S, et al. Neutrophil extracellular traps: a novel target for the treatment of stroke[J]. Pharmacol Ther, 2023, 241: 108328. DOI: 10.1016/j.pharmthera.2022.108328
|
[23] |
Thålin C, Hisada Y, Lundstr m S, et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1724-1738. DOI: 10.1161/ATVBAHA.119.312463
|
[24] |
Chen Y J, Li X B, Lin X X, et al. Complement C5a induces the generation of neutrophil extracellular traps by inhibiting mitochondrial STAT3 to promote the development of arterial thrombosis[J]. Thromb J, 2022, 20(1): 24. DOI: 10.1186/s12959-022-00384-0
|
[25] |
崔旭东, 道日娜, 杨敬平, 等. 中性粒细胞外诱捕网在慢性阻塞性肺疾病中的研究进展[J]. 临床肺科杂志, 2023, 28(10): 1559-1563. DOI: 10.3969/j.issn.1009-6663.2023.10.019
Cui X D, Dao R N, Yang J P, et al. Research progress of neutrophil extracellular trapping net in chronic obstructive pulmonary disease[J]. J Clin Pulm Med, 2023, 28(10): 1559-1563. DOI: 10.3969/j.issn.1009-6663.2023.10.019
|
[26] |
Keir H R, Chalmers J D. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy[J]. Eur Respir Rev, 2022, 31(163): 210241. DOI: 10.1183/16000617.0241-2021
|
[27] |
商安全, 孙祖俊, 李冬. 中性粒细胞胞外陷阱及其在炎性损伤中的作用[J]. 现代免疫学, 2020, 40(5): 419-423.
Shang A Q, Sun Z J, Li D. Neutrophil extracellular traps and their role in inflammatory injury[J]. Curr Immunol, 2020, 40(5): 419-423.
|
[28] |
Reidel B, Radicioni G, Clapp P W, et al. E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion[J]. Am J Respir Crit Care Med, 2018, 197(4): 492-501. DOI: 10.1164/rccm.201708-1590OC
|
[29] |
Mårdh C K, Root J, Uddin M, et al. Targets of neutrophil influx and weaponry: therapeutic opportunities for chronic obstructive airway disease[J]. J Immunol Res, 2017, 2017: 5273201.
|
[30] |
Chen Y J, Garvin L M, Nickola T J, et al. IL-1β induction of MUC5AC gene expression is mediated by CREB and NF-κB and repressed by dexamethasone[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(8): L797-L807. DOI: 10.1152/ajplung.00347.2013
|
[31] |
Janciauskiene S, Welte T. Well-known and less well-known functions of alpha-1 antitrypsin. its role in chronic obstruc-tive pulmonary disease and other disease developments[J]. Ann Am Thorac Soc, 2016, 13(Suppl 4): S280-S288.
|
[32] |
Dicker A J, Crichton M L, Pumphrey E G, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2018, 141(1): 117-127. DOI: 10.1016/j.jaci.2017.04.022
|
[33] |
Grabcanovic-Musija F, Obermayer A, Stoiber W, et al. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation[J]. Respir Res, 2015, 16(1): 59. DOI: 10.1186/s12931-015-0221-7
|
[34] |
Silveira J S, Antunes G L, Kaiber D B, et al. Reactive oxygen species are involved in eosinophil extracellular traps release and in airway inflammation in asthma[J]. J Cell Physiol, 2019, 234(12): 23633-23646. DOI: 10.1002/jcp.28931
|
[35] |
Vogelmeier C, Aquino T O, O'Brien C D, et al. A randomised, placebo-controlled, dose-finding study of AZD9668, an oral inhibitor of neutrophil elastase, in patients with chronic obstructive pulmonary disease treated with tiotropium[J]. COPD, 2012, 9(2): 111-120. DOI: 10.3109/15412555.2011.641803
|
[36] |
Antonelou M, Michaëlsson E, Evans R D R, et al. Therapeutic myeloperoxidase inhibition attenuates neutrophil activation, ANCA-mediated endothelial damage, and crescentic GN[J]. J Am Soc Nephrol, 2020, 31(2): 350-364. DOI: 10.1681/ASN.2019060618
|
[37] |
Ogawa H, Azuma M, Umeno A, et al. Singlet oxygen -derived nerve growth factor exacerbates airway hyperresponsiveness in a mouse model of asthma with mixed inflammation[J]. Allergol Int, 2022, 71(3): 395-404. DOI: 10.1016/j.alit.2022.02.005
|
[38] |
Uddin M, Watz H, Malmgren A, et al. NETopathic inflammation in chronic obstructive pulmonary disease and severe asthma[J]. Front Immunol, 2019, 10: 47. DOI: 10.3389/fimmu.2019.00047
|
[39] |
Kirsten A M, Förster K, Radeczky E, et al. The safety and tolerability of oral AZD5069, a selective CXCR2 antagonist, in patients with moderate-to-severe COPD[J]. Pulm Pharmacol Ther, 2015, 31: 36-41. DOI: 10.1016/j.pupt.2015.02.001
|
[40] |
Ashar H K, Pulavendran S, Rudd J M, et al. Administra-tion of a CXC chemokine receptor 2 (CXCR2) antagonist, SCH527123, together with oseltamivir suppresses NETosis and protects mice from lethal influenza and piglets from swine-influenza infection[J]. Am J Pathol, 2021, 191(4): 669-685. DOI: 10.1016/j.ajpath.2020.12.013
|
[41] |
Rennard S I, Dale D C, Donohue J F, et al. CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2015, 191(9): 1001-1011. DOI: 10.1164/rccm.201405-0992OC
|
[42] |
Bonilla M C, Quiros O N, Wendt M, et al. New insights into neutrophil extracellular trap (NETs) formation from porcine neutrophils in response to bacterial infections[J]. Int J Mol Sci, 2022, 23(16): 8953. DOI: 10.3390/ijms23168953
|
[43] |
Kim H J, Sim M S, Lee D H, et al. Lysophosphatidylserine induces eosinophil extracellular trap formation and degranulation: Implications in severe asthma[J]. Allergy, 2020, 75(12): 3159-3170. DOI: 10.1111/all.14450
|
[44] |
Rogliani P, Matera M G, Page C, et al. Efficacy and safety profile of mucolytic/antioxidant agents in chronic obstructive pulmonary disease: a comparative analysis across erdosteine, carbocysteine, and N-acetylcysteine[J]. Respir Res, 2019, 20(1): 104. DOI: 10.1186/s12931-019-1078-y
|
[45] |
Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology[J]. Nat Rev Rheumatol, 2020, 16(3): 155-166. DOI: 10.1038/s41584-020-0372-x
|
[46] |
Menegazzo L, Scattolini V, Cappellari R, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo[J]. Acta Diabetol, 2018, 55(6): 593-601. DOI: 10.1007/s00592-018-1129-8
|
[47] |
Xia M, Xu F, Ni H, et al. Neutrophil activation and NETosis are the predominant drivers of airway inflammation in an OVA/CFA/LPS induced murine model[J]. Respir Res, 2022, 23(1): 289. DOI: 10.1186/s12931-022-02209-0
|
[48] |
Lachowicz-Scroggins M E, Dunican E M, Charbit A R, et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma[J]. Am J Respir Crit Care Med, 2019, 199(9): 1076-1085. DOI: 10.1164/rccm.201810-1869OC
|
[49] |
Zhang T T, Mei Y L, Dong W F, et al. Evaluation of protein arginine deiminase-4 inhibitor in TNBS-induced colitis in mice[J]. Int Immunopharmacol, 2020, 84: 106583. DOI: 10.1016/j.intimp.2020.106583
|
[50] |
Dinallo V, Marafini I, Di Fusco D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis[J]. J Crohns Colitis, 2019, 13(6): 772-784.
|
[51] |
Winslow S, Odqvist L, Diver S, et al. Multi-omics links IL-6 trans-signalling with neutrophil extracellular trap formation and Haemophilus infection in COPD[J]. Eur Respir J, 2021, 58(4): 2003312.
|
[52] |
Zhang H, Qiu S L, Tang Q Y, et al. Erythromycin suppresses neutrophil extracellular traps in smoking-related chronic pulmonary inflammation[J]. Cell Death Dis, 2019, 10(9): 678.
|
[1] | LEI Zhenyun, XUE Guozhong, LIU Zhenhua, ZHANG Xinli. Research progress on action mechanism of NLRP3 inflammasome and pyroptosis in diabetic nephropathy[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0543 |
[2] | MOU Xingjian, FU Wenting, LI Sen, LIU Tao, ZHANG Fulong, SONG Yuan, LI Qiang, LU Juan. Research Progress on the Role of Mitophagy in Diabetic Ulcer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1389-1394. DOI: 10.12290/xhyxzz.2024-0154 |
[3] | YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216 |
[4] | YANG Mengjiao, YUAN Hao, ZHENG Ya, WANG Yuping, GUO Qinghong. Research Progress of ADAM17 in Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 375-381. DOI: 10.12290/xhyxzz.2023-0383 |
[5] | HUANG Lu, WU Youbin, NI Yiran, LIU Mengyuan, WU Jiangfeng, ZHANG Yanqiong. The Mechanism of miRNAs in Liver Fibrosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1251-1257. DOI: 10.12290/xhyxzz.2023-0125 |
[6] | CHENG Linlin, LI Zhan, LI Yongzhe. Research Progress on the Mechanism of Infection in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 925-931. DOI: 10.12290/xhyxzz.2023-0268 |
[7] | ZHANG Lu, LI Jian. Castleman Disease in China: State-of-the-art Technology Before the Era of IL-6 Targeted Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 911-914. DOI: 10.12290/xhyxzz.2023-0227 |
[8] | TIAN Meng, WU Guobing, YANG Jin, OUYANG Jing, CHANG Hong, LIU Min, ZHENG Ya, CHEN Zhaofeng. Research Progress on the Mechanism of Gastric Microecology in the Development of Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 581-585. DOI: 10.12290/xhyxzz.2022-0593 |
[9] | SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. DOI: 10.12290/xhyxzz.2022-0694 |
[10] | Hao GUO, Wen-da WANG, Yi CAI, Yu-shi ZHANG. Progress in Research on MicroRNA in Tuberous Sclerosis Complex Related Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 283-288. DOI: 10.3969/j.issn.1674-9081.2017.05.017 |
1. |
邹吉宇,王天娇,臧凝子,刘勇明,庞立健,王琳琳,吕晓东. 慢性阻塞性肺疾病发病机制及中药调节作用研究进展. 中国实验方剂学杂志. 2025(01): 287-298 .
![]() |