XU Jinhui, YUE Hongmei, LIU Miaomiao, LI Yating, WU Xingdong, ZHU Haobin. Role of Neutrophil Extracellular Traps in Chronic Obstructive Pulmonary Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 153-159. DOI: 10.12290/xhyxzz.2023-0396
Citation: XU Jinhui, YUE Hongmei, LIU Miaomiao, LI Yating, WU Xingdong, ZHU Haobin. Role of Neutrophil Extracellular Traps in Chronic Obstructive Pulmonary Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 153-159. DOI: 10.12290/xhyxzz.2023-0396

Role of Neutrophil Extracellular Traps in Chronic Obstructive Pulmonary Disease

Funds: 

Gansu Provincial Science and Technology Program 22ZD1FA001

More Information
  • Corresponding author:

    YUE Hongmei, E-mail: yuehongmei@sina.com

  • Received Date: August 23, 2023
  • Accepted Date: September 17, 2023
  • Available Online: January 23, 2024
  • Issue Publish Date: January 29, 2024
  • Chronic obstructive pulmonary disease (COPD), a respiratory disease characterized by inflammation due to neutrophil infiltration, has become the third leading cause of death worldwide. After the occurrence of COPD, the persistent accumulation of neutrophils can promote the excessive formation of neutrophil extracellular traps (NETs), which plays an important role in local capture and clearance of pathogens, rapid control of infection, and immune regulation. This article mainly introduces the mechanism of COPD occurrence and NETs formation as well as the research progress of NETs in COPD, and summarizes the relevant drug targets for COPD treatment based on NETs, aiming to provide a reference for further research.
  • [1]
    Vachon B, Giasson G, Gaboury I, et al. Challenges and strategies for improving COPD primary care services in Quebec: results of the experience of the COMPAS+ quality improvement collaborative[J]. Int J Chron Obstruct Pulmon Dis, 2022, 17: 259-272. DOI: 10.2147/COPD.S341905
    [2]
    Yang Y W, Cao Y, Han X B, et al. Revealing EXPH5 as a potential diagnostic gene biomarker of the late stage of COPD based on machine learning analysis[J]. Comput Biol Med, 2023, 154: 106621. DOI: 10.1016/j.compbiomed.2023.106621
    [3]
    Kotlyarov S. Involvement of the innate immune system in the pathogenesis of chronic obstructive pulmonary disease[J]. Int J Mol Sci, 2022, 23(2): 985. DOI: 10.3390/ijms23020985
    [4]
    Jo A, Kim D W. Neutrophil extracellular traps in airway diseases: pathological roles and therapeutic implications[J]. Int J Mol Sci, 2023, 24(5): 5034. DOI: 10.3390/ijms24055034
    [5]
    Twaddell S H, Baines K J, Grainge C, et al. The emerging role of neutrophil extracellular traps in respiratory disease[J]. Chest, 2019, 156(4): 774-782. DOI: 10.1016/j.chest.2019.06.012
    [6]
    Wang K, Liao Y, Li X O, et al. Inhibition of neutrophil elastase prevents cigarette smoke exposure-induced formation of neutrophil extracellular traps and improves lung function in a mouse model of chronic obstructive pulmonary disease[J]. Int Immunopharmacol, 2023, 114: 109537. DOI: 10.1016/j.intimp.2022.109537
    [7]
    Guo P, Li R, Piao T H, et al. Pathological mechanism and targeted drugs of COPD[J]. Int J Chron Obstruct Pulmon Dis, 2022, 17: 1565-1575. DOI: 10.2147/COPD.S366126
    [8]
    Lee J, Jang J, Park S M, et al. An update on the role of Nrf2 in respiratory disease: molecular mechanisms and therapeutic approaches[J]. Int J Mol Sci, 2021, 22(16): 8406. DOI: 10.3390/ijms22168406
    [9]
    Barnes P J. Oxidative stress-based therapeutics in COPD[J]. Redox Biol, 2020, 33: 101544. DOI: 10.1016/j.redox.2020.101544
    [10]
    Zhang X Y, Li W, Zhang J R, et al. Roles of sirtuin family members in chronic obstructive pulmonary disease[J]. Respir Res, 2022, 23(1): 66. DOI: 10.1186/s12931-022-01986-y
    [11]
    Birch J, Barnes P J, Passos J F. Mitochondria, telomeres and cell senescence: implications for lung ageing and disease[J]. Pharmacol Ther, 2018, 183: 34-49. DOI: 10.1016/j.pharmthera.2017.10.005
    [12]
    Mano Y, Tsukamoto M, Wang K Y, et al. Oxidative stress causes muscle structural alterations via p38 MAPK signaling in COPD mouse model[J]. J Bone Miner Metab, 2022, 40(6): 927-939. DOI: 10.1007/s00774-022-01371-1
    [13]
    Moradi S, Jarrahi E, Ahmadi A, et al. PI3K signalling in chronic obstructive pulmonary disease and opportunities for therapy[J]. J Pathol, 2021, 254(5): 505-518. DOI: 10.1002/path.5696
    [14]
    Li Y, Wang W, Yang F, et al. The regulatory roles of neutrophils in adaptive immunity[J]. Cell Commun Signal, 2019, 17(1): 147. DOI: 10.1186/s12964-019-0471-y
    [15]
    Guillon A, Jouan Y, Brea D, et al. Neutrophil proteases alter the interleukin-22-receptor-dependent lung antimicro-bial defence[J]. Eur Respir J, 2015, 46(3): 771-782. DOI: 10.1183/09031936.00215114
    [16]
    Gharib S A, Manicone A M, Parks W C. Matrix metalloproteinases in emphysema[J]. Matrix Biol, 2018, 73: 34-51. DOI: 10.1016/j.matbio.2018.01.018
    [17]
    Strange C. Alpha-1 antitrypsin deficiency associated COPD[J]. Clin Chest Med, 2020, 41(3): 339-345. DOI: 10.1016/j.ccm.2020.05.003
    [18]
    Arezina R, Chen T, Wang D. Conventional, complementary and alternative medicines: mechanistic insights into therapeutic landscape of chronic obstructive pulmonary disease[J]. Int J Chron Obstruct Pulmon Dis, 2023, 18: 447-457. DOI: 10.2147/COPD.S393540
    [19]
    Hikichi M, Mizumura K, Maruoka S, et al. Pathogenesis of chronic obstructive pulmonary disease (COPD) induced by cigarette smoke[J]. J Thorac Dis, 2019, 11(Suppl 17): S2129-S2140.
    [20]
    钱鸳鸳, 余钊. 中性粒细胞胞外网状陷阱(NETs) 在肺栓塞中的研究进展[J]. 浙江中西医结合杂志, 2023, 33(2): 191-193.

    Y Y, Yu Z. Research progress on neutrophil extracellular network traps (NETs) in pulmonary embolism[J]. Zhejiang J Integr Tradit Chin West Med, 2023, 33(2): 191-193.
    [21]
    Papayannopoulos V. Neutrophil extracellular traps in immu-nity and disease[J]. Nat Rev Immunol, 2018, 18(2): 134-147. DOI: 10.1038/nri.2017.105
    [22]
    Zhao Z Y, Pan Z R, Zhang S, et al. Neutrophil extracellular traps: a novel target for the treatment of stroke[J]. Pharmacol Ther, 2023, 241: 108328. DOI: 10.1016/j.pharmthera.2022.108328
    [23]
    Thålin C, Hisada Y, Lundstr m S, et al. Neutrophil extracellular traps: villains and targets in arterial, venous, and cancer-associated thrombosis[J]. Arterioscler Thromb Vasc Biol, 2019, 39(9): 1724-1738. DOI: 10.1161/ATVBAHA.119.312463
    [24]
    Chen Y J, Li X B, Lin X X, et al. Complement C5a induces the generation of neutrophil extracellular traps by inhibiting mitochondrial STAT3 to promote the development of arterial thrombosis[J]. Thromb J, 2022, 20(1): 24. DOI: 10.1186/s12959-022-00384-0
    [25]
    崔旭东, 道日娜, 杨敬平, 等. 中性粒细胞外诱捕网在慢性阻塞性肺疾病中的研究进展[J]. 临床肺科杂志, 2023, 28(10): 1559-1563. DOI: 10.3969/j.issn.1009-6663.2023.10.019

    Cui X D, Dao R N, Yang J P, et al. Research progress of neutrophil extracellular trapping net in chronic obstructive pulmonary disease[J]. J Clin Pulm Med, 2023, 28(10): 1559-1563. DOI: 10.3969/j.issn.1009-6663.2023.10.019
    [26]
    Keir H R, Chalmers J D. Neutrophil extracellular traps in chronic lung disease: implications for pathogenesis and therapy[J]. Eur Respir Rev, 2022, 31(163): 210241. DOI: 10.1183/16000617.0241-2021
    [27]
    商安全, 孙祖俊, 李冬. 中性粒细胞胞外陷阱及其在炎性损伤中的作用[J]. 现代免疫学, 2020, 40(5): 419-423.

    Shang A Q, Sun Z J, Li D. Neutrophil extracellular traps and their role in inflammatory injury[J]. Curr Immunol, 2020, 40(5): 419-423.
    [28]
    Reidel B, Radicioni G, Clapp P W, et al. E-cigarette use causes a unique innate immune response in the lung, involving increased neutrophilic activation and altered mucin secretion[J]. Am J Respir Crit Care Med, 2018, 197(4): 492-501. DOI: 10.1164/rccm.201708-1590OC
    [29]
    Mårdh C K, Root J, Uddin M, et al. Targets of neutrophil influx and weaponry: therapeutic opportunities for chronic obstructive airway disease[J]. J Immunol Res, 2017, 2017: 5273201.
    [30]
    Chen Y J, Garvin L M, Nickola T J, et al. IL-1β induction of MUC5AC gene expression is mediated by CREB and NF-κB and repressed by dexamethasone[J]. Am J Physiol Lung Cell Mol Physiol, 2014, 306(8): L797-L807. DOI: 10.1152/ajplung.00347.2013
    [31]
    Janciauskiene S, Welte T. Well-known and less well-known functions of alpha-1 antitrypsin. its role in chronic obstruc-tive pulmonary disease and other disease developments[J]. Ann Am Thorac Soc, 2016, 13(Suppl 4): S280-S288.
    [32]
    Dicker A J, Crichton M L, Pumphrey E G, et al. Neutrophil extracellular traps are associated with disease severity and microbiota diversity in patients with chronic obstructive pulmonary disease[J]. J Allergy Clin Immunol, 2018, 141(1): 117-127. DOI: 10.1016/j.jaci.2017.04.022
    [33]
    Grabcanovic-Musija F, Obermayer A, Stoiber W, et al. Neutrophil extracellular trap (NET) formation characterises stable and exacerbated COPD and correlates with airflow limitation[J]. Respir Res, 2015, 16(1): 59. DOI: 10.1186/s12931-015-0221-7
    [34]
    Silveira J S, Antunes G L, Kaiber D B, et al. Reactive oxygen species are involved in eosinophil extracellular traps release and in airway inflammation in asthma[J]. J Cell Physiol, 2019, 234(12): 23633-23646. DOI: 10.1002/jcp.28931
    [35]
    Vogelmeier C, Aquino T O, O'Brien C D, et al. A randomised, placebo-controlled, dose-finding study of AZD9668, an oral inhibitor of neutrophil elastase, in patients with chronic obstructive pulmonary disease treated with tiotropium[J]. COPD, 2012, 9(2): 111-120. DOI: 10.3109/15412555.2011.641803
    [36]
    Antonelou M, Michaëlsson E, Evans R D R, et al. Therapeutic myeloperoxidase inhibition attenuates neutrophil activation, ANCA-mediated endothelial damage, and crescentic GN[J]. J Am Soc Nephrol, 2020, 31(2): 350-364. DOI: 10.1681/ASN.2019060618
    [37]
    Ogawa H, Azuma M, Umeno A, et al. Singlet oxygen -derived nerve growth factor exacerbates airway hyperresponsiveness in a mouse model of asthma with mixed inflammation[J]. Allergol Int, 2022, 71(3): 395-404. DOI: 10.1016/j.alit.2022.02.005
    [38]
    Uddin M, Watz H, Malmgren A, et al. NETopathic inflammation in chronic obstructive pulmonary disease and severe asthma[J]. Front Immunol, 2019, 10: 47. DOI: 10.3389/fimmu.2019.00047
    [39]
    Kirsten A M, Förster K, Radeczky E, et al. The safety and tolerability of oral AZD5069, a selective CXCR2 antagonist, in patients with moderate-to-severe COPD[J]. Pulm Pharmacol Ther, 2015, 31: 36-41. DOI: 10.1016/j.pupt.2015.02.001
    [40]
    Ashar H K, Pulavendran S, Rudd J M, et al. Administra-tion of a CXC chemokine receptor 2 (CXCR2) antagonist, SCH527123, together with oseltamivir suppresses NETosis and protects mice from lethal influenza and piglets from swine-influenza infection[J]. Am J Pathol, 2021, 191(4): 669-685. DOI: 10.1016/j.ajpath.2020.12.013
    [41]
    Rennard S I, Dale D C, Donohue J F, et al. CXCR2 antagonist MK-7123. A phase 2 proof-of-concept trial for chronic obstructive pulmonary disease[J]. Am J Respir Crit Care Med, 2015, 191(9): 1001-1011. DOI: 10.1164/rccm.201405-0992OC
    [42]
    Bonilla M C, Quiros O N, Wendt M, et al. New insights into neutrophil extracellular trap (NETs) formation from porcine neutrophils in response to bacterial infections[J]. Int J Mol Sci, 2022, 23(16): 8953. DOI: 10.3390/ijms23168953
    [43]
    Kim H J, Sim M S, Lee D H, et al. Lysophosphatidylserine induces eosinophil extracellular trap formation and degranulation: Implications in severe asthma[J]. Allergy, 2020, 75(12): 3159-3170. DOI: 10.1111/all.14450
    [44]
    Rogliani P, Matera M G, Page C, et al. Efficacy and safety profile of mucolytic/antioxidant agents in chronic obstructive pulmonary disease: a comparative analysis across erdosteine, carbocysteine, and N-acetylcysteine[J]. Respir Res, 2019, 20(1): 104. DOI: 10.1186/s12931-019-1078-y
    [45]
    Schrezenmeier E, Dörner T. Mechanisms of action of hydroxychloroquine and chloroquine: implications for rheumatology[J]. Nat Rev Rheumatol, 2020, 16(3): 155-166. DOI: 10.1038/s41584-020-0372-x
    [46]
    Menegazzo L, Scattolini V, Cappellari R, et al. The antidiabetic drug metformin blunts NETosis in vitro and reduces circulating NETosis biomarkers in vivo[J]. Acta Diabetol, 2018, 55(6): 593-601. DOI: 10.1007/s00592-018-1129-8
    [47]
    Xia M, Xu F, Ni H, et al. Neutrophil activation and NETosis are the predominant drivers of airway inflammation in an OVA/CFA/LPS induced murine model[J]. Respir Res, 2022, 23(1): 289. DOI: 10.1186/s12931-022-02209-0
    [48]
    Lachowicz-Scroggins M E, Dunican E M, Charbit A R, et al. Extracellular DNA, neutrophil extracellular traps, and inflammasome activation in severe asthma[J]. Am J Respir Crit Care Med, 2019, 199(9): 1076-1085. DOI: 10.1164/rccm.201810-1869OC
    [49]
    Zhang T T, Mei Y L, Dong W F, et al. Evaluation of protein arginine deiminase-4 inhibitor in TNBS-induced colitis in mice[J]. Int Immunopharmacol, 2020, 84: 106583. DOI: 10.1016/j.intimp.2020.106583
    [50]
    Dinallo V, Marafini I, Di Fusco D, et al. Neutrophil extracellular traps sustain inflammatory signals in ulcerative colitis[J]. J Crohns Colitis, 2019, 13(6): 772-784.
    [51]
    Winslow S, Odqvist L, Diver S, et al. Multi-omics links IL-6 trans-signalling with neutrophil extracellular trap formation and Haemophilus infection in COPD[J]. Eur Respir J, 2021, 58(4): 2003312.
    [52]
    Zhang H, Qiu S L, Tang Q Y, et al. Erythromycin suppresses neutrophil extracellular traps in smoking-related chronic pulmonary inflammation[J]. Cell Death Dis, 2019, 10(9): 678.
  • Related Articles

    [1]LEI Zhenyun, XUE Guozhong, LIU Zhenhua, ZHANG Xinli. Research progress on action mechanism of NLRP3 inflammasome and pyroptosis in diabetic nephropathy[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0543
    [2]MOU Xingjian, FU Wenting, LI Sen, LIU Tao, ZHANG Fulong, SONG Yuan, LI Qiang, LU Juan. Research Progress on the Role of Mitophagy in Diabetic Ulcer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1389-1394. DOI: 10.12290/xhyxzz.2024-0154
    [3]YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216
    [4]YANG Mengjiao, YUAN Hao, ZHENG Ya, WANG Yuping, GUO Qinghong. Research Progress of ADAM17 in Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 375-381. DOI: 10.12290/xhyxzz.2023-0383
    [5]HUANG Lu, WU Youbin, NI Yiran, LIU Mengyuan, WU Jiangfeng, ZHANG Yanqiong. The Mechanism of miRNAs in Liver Fibrosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1251-1257. DOI: 10.12290/xhyxzz.2023-0125
    [6]CHENG Linlin, LI Zhan, LI Yongzhe. Research Progress on the Mechanism of Infection in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 925-931. DOI: 10.12290/xhyxzz.2023-0268
    [7]ZHANG Lu, LI Jian. Castleman Disease in China: State-of-the-art Technology Before the Era of IL-6 Targeted Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 911-914. DOI: 10.12290/xhyxzz.2023-0227
    [8]TIAN Meng, WU Guobing, YANG Jin, OUYANG Jing, CHANG Hong, LIU Min, ZHENG Ya, CHEN Zhaofeng. Research Progress on the Mechanism of Gastric Microecology in the Development of Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 581-585. DOI: 10.12290/xhyxzz.2022-0593
    [9]SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. DOI: 10.12290/xhyxzz.2022-0694
    [10]Hao GUO, Wen-da WANG, Yi CAI, Yu-shi ZHANG. Progress in Research on MicroRNA in Tuberous Sclerosis Complex Related Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 283-288. DOI: 10.3969/j.issn.1674-9081.2017.05.017
  • Cited by

    Periodical cited type(1)

    1. 邹吉宇,王天娇,臧凝子,刘勇明,庞立健,王琳琳,吕晓东. 慢性阻塞性肺疾病发病机制及中药调节作用研究进展. 中国实验方剂学杂志. 2025(01): 287-298 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (353) PDF downloads (53) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close