[1]
|
Wang H, Wang Z, Wang Y, et al.miRNA-130b-5p promotes hepatic stellate cell activation and the development of liver fibrosis by suppressing SIRT4 expression[J]. J Cell Mol Med, 2021, 25:7381- 7394. |
[2]
|
Szabo G, Bala S. MicroRNAs in liver disease[J]. Nat Rev Gastroenterol Hepatol, 2013, 10:542- 552. |
[3]
|
Bhaskaran M, Mohan M. MicroRNAs:history, biogenesis, and their evolving role in animal development and disease[J]. Vet Pathol, 2014, 51:759-774. |
[4]
|
Michlewski G, Caceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25:1-16. |
[5]
|
Li M, Yu B, Recent advances in the regulation of plant miRNA biogenesis[J]. RNA Biol, 2021, 18:2087-2096. |
[6]
|
Suzuki HI, Young RA, Sharp PA. Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis[J]. Cell, 2017, 168:1000-1014. |
[7]
|
Nguyen TA, Park J, Dang TL, et al. Microprocessor depends on hemin to recognize the apical loop of primary microRNA[J]. Nucleic Acids Res, 2018, 46:5726-5736. |
[8]
|
Alarcon CR, Lee H, Goodarzi H, et al. N6-methyladenosine marks primary microRNAs for processing[J]. Nature, 2015, 519:482-485. |
[9]
|
Li H, Li X, Yu S, et al. miR-23b Ameliorates nonalcoholic steatohepatitis by targeting Acyl-CoA thioesterases 4[J]. Exp Cell Res, 2021, 407:112787. |
[10]
|
El-Hefny M, Fouad S, Hussein T, et al. Circulating microRNAs as predictive biomarkers for liver disease progression of chronic hepatitis C (genotype-4) Egyptian patients[J]. J Med Virol, 2019, 91:93-101. |
[11]
|
Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs[J]. Elife., 2015, 4:e05005. |
[12]
|
Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis[J]. Hepatology, 2011, 53:209-218. |
[13]
|
Yu X, Elfimova N, Muller M, et al. Autophagy-Related Activation of Hepatic Stellate Cells Reduces Cellular miR-29a by Promoting Its Vesicular Secretion[J]. Cell Mol Gastroenterol Hepatol, 2022, 13:1701-1716. |
[14]
|
Matsumoto Y, Itami S, Kuroda M, et al. MiR-29a Assists in Preventing the Activation of Human Stellate Cells and Promotes Recovery From Liver Fibrosis in Mice[J]. Mol Ther, 2016, 24:1848-1859. |
[15]
|
Girard M, Jacquemin E, Munnich A, et al. miR-122, a paradigm for the role of microRNAs in the liver[J]. J Hepatol, 2008, 48:648-656. |
[16]
|
Sendi H, Mead I, Wan M, et al. miR-122 inhibition in a human liver organoid model leads to liver inflammation, necrosis, steatofibrosis and dysregulated insulin signaling[J]. PLOS ONE, 2018, 13:e200847. |
[17]
|
Satishchandran A, Ambade A, Rao S, et al. MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice and Patients From Ethanol-Induced Liver Disease[J]. Gastroenterology, 2018, 154:238-252. |
[18]
|
Zeng C, Wang YL, Xie C, et al. Identification of a novel TGF-beta-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis[J]. Oncotarget, 2015, 6:12224-12233. |
[19]
|
Li J, Ghazwani M, Zhang Y, et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression[J]. J Hepatol, 2013, 58:522-528. |
[20]
|
Wu Z, Wang J, Feng J, et al. MicroRNA-122-5p prevents proliferation and promotes apoptosis of hepatic stellate cells by suppressing the cellular-Abelsongene/histone deacetylases 2 pathway[J]. Hum Exp Toxicol, 2022, 41:774864384. |
[21]
|
Omran AA, Osman KS, Kamel H M, et al. MicroRNA-122 as a Novel Non-Invasive Marker of Liver Fibrosis in Hepatitis C Virus Patients[J]. Clin Lab, 2016, 62:1329-1337. |
[22]
|
Lou G, Yang Y, Liu F, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis[J]. J Cell Mol Med, 2017, 21:2963-2973. |
[23]
|
Kim K, Lee JI, Kim O, et al. Ameliorating liver fibrosis in an animal model using the secretome released from miR-122-transfected adipose-derived stem cells[J]. World Journal of Stem Cells, 2019, 11:990-1004. |
[24]
|
Yan G, Li B, Xin X, et al. MicroRNA-34a Promotes Hepatic Stellate Cell Activation via Targeting ACSL1[J]. Med Sci Monit, 2015, 21:3008-3015. |
[25]
|
Li X, Chen Y, Wu S, et al. microRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor gamma[J]. Mol Med Rep, 2015, 11:1017-1024. |
[26]
|
Song L, Chen TY, Zhao XJ, et al. Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGFbeta1/Smads signalling[J]. Br J Pharmacol, 2019, 176:1619-1634. |
[27]
|
Tian XF,Ji FJ,Zang HL,et al. Activation of the miR-34a/SIRT1/p53 Signaling Pathway Contributes to the Progress of Liver Fibrosis via Inducing Apoptosis in Hepatocytes but Not in HSCs[J]. PLoS One, 2016, 11:e158657. |
[28]
|
Liu Q, Zhang Y, Yang S, et al. PU.1-deficient mice are resistant to thioacetamide-induced hepatic fibrosis:PU.1 finely regulates Sirt1 expression via transcriptional promotion of miR-34a and miR-29c in hepatic stellate cells[J]. Biosci Rep, 2017, 37:BSR20170926. |
[29]
|
Li X, Zhang W, Xu K, et al. miR-34a promotes liver fibrosis in patients with chronic hepatitis via mediating Sirt1/p53 signaling pathway[J]. Pathol Res Pract, 2020, 216:152876. |
[30]
|
Messner CJ, Schmidt S, Ozkul D, et al. Identification of miR-199a-5p, miR-214-3p and miR- 99b-5p as Fibrosis-Specific Extracellular Biomarkers and Promoters of HSC Activation[J]. Int J Mol Sci, 2021, 22:9799. |
[31]
|
Murakami Y, Toyoda H, Tanaka M, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families[J]. PLoS One, 2011, 6:e16081. |
[32]
|
Lino CC, Henaoui IS, Courcot E, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1[J]. PLoS Genet, 2013, 9:e1003291. |
[33]
|
Yang X, Ma L, Wei R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-beta pathway[J]. Signal Transduct Target Ther, 2020, 5:75. |
[34]
|
Pineau P, Volinia S, Mcjunkin K, et al. miR-221 overexpression contributes to liver tumorigenesis[J]. Proc Natl Acad Sci USA, 2010, 107:264-269. |
[35]
|
Ogawa T, Enomoto M, Fujii H, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis[J]. Gut, 2012, 61:1600-1609. |
[36]
|
Galardi S, Mercatelli N, Farace M G, et al. NF-kB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells[J]. Nucleic Acids Res, 2011, 39:3892-3902. |
[37]
|
Sehgal M, Zeremski M, Talal AH, et al. IFN-alpha-Induced Downregulation of miR-221 in Dendritic Cells:Implications for HCV Pathogenesis and Treatment[J]. J Interferon Cytokine Res, 2015, 35:698-709. |
[38]
|
Mafanda EK, Kandhi R, Bobbala D, et al. Essential role of suppressor of cytokine signaling 1(SOCS1) in hepatocytes and macrophages in the regulation of liver fibrosis[J]. Cytokine, 2019, 124:154501. |
[39]
|
Jiang X, Jiang L, Shan A, et al. Targeting hepatic miR-221/222 for therapeutic intervention of nonalcoholic steatohepatitis in mice[J]. EBioMedicine, 2018, 37:307-321. |
[40]
|
Markovic J, Sharma AD, Balakrishnan A. MicroRNA-221:A Fine Tuner and Potential Biomarker of Chronic Liver Injury[J]. Cells, 2020, 9:1767. |
[41]
|
Blaya D, Aguilar-Bravo B, Hao F, et al. Expression of microRNA-155 in inflammatory cells modulates liver injury[J]. Hepatology, 2018, 68:691-706. |
[42]
|
Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis[J]. J Hepatol, 2016, 64:1378-1387. |
[43]
|
Bala S, Ganz M, Babuta M, et al. Steatosis, inflammasome upregulation, and fibrosis are attenuated in miR-155 deficient mice in a high fat-cholesterol-sugar diet-induced model of NASH[J]. Laboratory Investigation, 2021, 101:1540-1549. |
[44]
|
Dai W, Zhao J, Tang N, et al. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously preventing EMT process and ERK1 signalling pathway[J]. Liver Int, 2015, 35:1234- 1243. |
[45]
|
Niu LJ, Zhang YM, Huang T, et al. Exosomal microRNA-155 as a biomarker for hepatic fibrosis diagnosis and progression[J]. Ann Transl Med, 2021, 9:137. |
[46]
|
Wang Y, Luo J, Zhang H, et al. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes[J]. Mol Biol Evol, 2016, 33:2232-2247. |
[47]
|
Wan LY, Peng H, Ni YR, et al. The miR-23b/27b/24-1 Cluster Inhibits Hepatic Fibrosis by Inactivating Hepatic Stellate Cells[J]. Cell Mol Gastroenterol Hepatol, 2022, 13:1393-1412. |
[48]
|
Hong SW, Jung KH, Zheng HM, et al. The protective effect of resveratrol on dimethylnitrosamineinduced liver fibrosis in rats[J]. Arch Pharm Res, 2010, 33:601-609. |
[49]
|
Pan Y, Wang J, He L, et al. MicroRNA-34a Promotes EMT and Liver Fibrosis in Primary Biliary Cholangitis by Regulating TGF-beta1/smad Pathway[J]. J Immunol Res, 2021, 2021:6890423. |
[50]
|
Harrison SA, Ratziu V, Boursier J, et al. A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis:a prospective derivation and global validation study[J]. Lancet Gastroenterol Hepatol, 2020, 5:970-985. |
[51]
|
Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours[J]. Br J Cancer, 2020, 122:1630-1637. |
[52]
|
陆伦根,尤红,谢渭芬,等. 肝纤维化诊断及治疗共识(2019年)[J]. 实用肝脏病杂志, 2019, 22:793-803. |
[53]
|
Hassan S, Syed S, Kehar SI. Review of diagnostic techniques of hepatic fibrosis[J]. J Pak Med Assoc, 2014, 64:941-945. |
[54]
|
Dana J, Venkatasamy A, Saviano A, et al. Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease[J]. Hepatol Int, 2022, 16:509-522. |
[55]
|
Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility[J]. Nat Biotechnol, 2017, 35:238-248. |
[56]
|
Yamamoto T, Mukai Y, Wada F, et al. Highly Potent GalNAc-Conjugated Tiny LNA AntimiRNA-122 Antisense Oligonucleotides[J]. Pharmaceutics, 2021, 13:817. |