Citation: | HUANG Lu, WU Youbin, NI Yiran, LIU Mengyuan, WU Jiangfeng, ZHANG Yanqiong. The Mechanism of miRNAs in Liver Fibrosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1251-1257. DOI: 10.12290/xhyxzz.2023-0125 |
[1] |
Wang H, Wang Z, Wang Y, et al. miRNA-130b-5p promotes hepatic stellate cell activation and the development of liver fibrosis by suppressing SIRT4 expression[J]. J Cell Mol Med, 2021, 25: 7381-7394. DOI: 10.1111/jcmm.16766
|
[2] |
Szabo G, Bala S. MicroRNAs in liver disease[J]. Nat Rev Gastroenterol Hepatol, 2013, 10: 542-552. DOI: 10.1038/nrgastro.2013.87
|
[3] |
Bhaskaran M, Mohan M. MicroRNAs: history, biogenesis, and their evolving role in animal development and disease[J]. Vet Pathol, 2014, 51: 759-774. DOI: 10.1177/0300985813502820
|
[4] |
Michlewski G, Caceres JF. Post-transcriptional control of miRNA biogenesis[J]. RNA, 2019, 25: 1-16. DOI: 10.1261/rna.068692.118
|
[5] |
Li M, Yu B, Recent advances in the regulation of plant miRNA biogenesis[J]. RNA Biol, 2021, 18: 2087-2096. DOI: 10.1080/15476286.2021.1899491
|
[6] |
Suzuki HI, Young RA, Sharp PA. Super-Enhancer-Mediated RNA Processing Revealed by Integrative MicroRNA Network Analysis[J]. Cell, 2017, 168: 1000-1014. DOI: 10.1016/j.cell.2017.02.015
|
[7] |
Nguyen TA, Park J, Dang TL, et al. Microprocessor depends on hemin to recognize the apical loop of primary microRNA[J]. Nucleic Acids Res, 2018, 46: 5726-5736. DOI: 10.1093/nar/gky248
|
[8] |
Alarcon CR, Lee H, Goodarzi H, et al. N6-methyl-adenosine marks primary microRNAs for processing[J]. Nature, 2015, 519: 482-485. DOI: 10.1038/nature14281
|
[9] |
Li H, Li X, Yu S, et al. miR-23b Ameliorates nonalco-holic steatohepatitis by targeting Acyl-CoA thioesterases 4[J]. Exp Cell Res, 2021, 407: 112787. DOI: 10.1016/j.yexcr.2021.112787
|
[10] |
El-Hefny M, Fouad S, Hussein T, et al. Circulating microRNAs as predictive biomarkers for liver disease progres-sion of chronic hepatitis C (genotype-4) Egyptian patients[J]. J Med Virol, 2019, 91: 93-101. DOI: 10.1002/jmv.25294
|
[11] |
Agarwal V, Bell GW, Nam JW, et al. Predicting effective microRNA target sites in mammalian mRNAs[J]. Elife, 2015, 4: e05005. DOI: 10.7554/eLife.05005
|
[12] |
Roderburg C, Urban GW, Bettermann K, et al. Micro-RNA profiling reveals a role for miR-29 in human and murine liver fibrosis[J]. Hepatology, 2011, 53: 209-218. DOI: 10.1002/hep.23922
|
[13] |
Yu X, Elfimova N, Muller M, et al. Autophagy-Related Activation of Hepatic Stellate Cells Reduces Cellular miR-29a by Promoting Its Vesicular Secretion[J]. Cell Mol Gastroenterol Hepatol, 2022, 13: 1701-1716. DOI: 10.1016/j.jcmgh.2022.02.013
|
[14] |
Matsumoto Y, Itami S, Kuroda M, et al. MiR-29a Assists in Preventing the Activation of Human Stellate Cells and Promotes Recovery From Liver Fibrosis in Mice[J]. Mol Ther, 2016, 24: 1848-1859. DOI: 10.1038/mt.2016.127
|
[15] |
Girard M, Jacquemin E, Munnich A, et al. miR-122, a paradigm for the role of microRNAs in the liver[J]. J Hepatol, 2008, 48: 648-656. DOI: 10.1016/j.jhep.2008.01.019
|
[16] |
Sendi H, Mead I, Wan M, et al. miR-122 inhibition in a human liver organoid model leads to liver inflammation, necrosis, steatofibrosis and dysregulated insulin signaling[J]. PLoS One, 2018, 13: e200847.
|
[17] |
Satishchandran A, Ambade A, Rao S, et al. MicroRNA 122, Regulated by GRLH2, Protects Livers of Mice and Patients From Ethanol-Induced Liver Disease[J]. Gastroenterology, 2018, 154: 238-252. DOI: 10.1053/j.gastro.2017.09.022
|
[18] |
Zeng C, Wang YL, Xie C, et al. Identification of a novel TGF-beta-miR-122-fibronectin 1/serum response factor signaling cascade and its implication in hepatic fibrogenesis[J]. Oncotarget, 2015, 6: 12224-12233. DOI: 10.18632/oncotarget.3652
|
[19] |
Li J, Ghazwani M, Zhang Y, et al. miR-122 regulates collagen production via targeting hepatic stellate cells and suppressing P4HA1 expression[J]. J Hepatol, 2013, 58: 522-528. DOI: 10.1016/j.jhep.2012.11.011
|
[20] |
Wu Z, Wang J, Feng J, et al. MicroRNA-122-5p prevents proliferation and promotes apoptosis of hepatic stellate cells by suppressing the cellular-Abelsongene/histone deacetylases 2 pathway[J]. Hum Exp Toxicol, 2022, 41: 774864384.
|
[21] |
Omran AA, Osman KS, Kamel HM, et al. MicroRNA-122 as a Novel Non-Invasive Marker of Liver Fibrosis in Hepatitis C Virus Patients[J]. Clin Lab, 2016, 62: 1329-1337.
|
[22] |
Lou G, Yang Y, Liu F, et al. MiR-122 modification enhances the therapeutic efficacy of adipose tissue-derived mesenchymal stem cells against liver fibrosis[J]. J Cell Mol Med, 2017, 21: 2963-2973. DOI: 10.1111/jcmm.13208
|
[23] |
Kim K, Lee JI, Kim O, et al. Ameliorating liver fibrosis in an animal model using the secretome released from miR-122-transfected adipose-derived stem cells[J]. World J Stem Cells, 2019, 11: 990-1004. DOI: 10.4252/wjsc.v11.i11.990
|
[24] |
Yan G, Li B, Xin X, et al. MicroRNA-34a Promotes Hepatic Stellate Cell Activation via Targeting ACSL1[J]. Med Sci Monit, 2015, 21: 3008-3015. DOI: 10.12659/MSM.894000
|
[25] |
Li X, Chen Y, Wu S, et al. microRNA-34a and microRNA-34c promote the activation of human hepatic stellate cells by targeting peroxisome proliferator-activated receptor gamma[J]. Mol Med Rep, 2015, 11: 1017-1024. DOI: 10.3892/mmr.2014.2846
|
[26] |
Song L, Chen TY, Zhao XJ, et al. Pterostilbene prevents hepatocyte epithelial-mesenchymal transition in fructose-induced liver fibrosis through suppressing miR-34a/Sirt1/p53 and TGF-beta1/Smads signalling[J]. Br J Pharmacol, 2019, 176: 1619-1634. DOI: 10.1111/bph.14573
|
[27] |
Tian XF, Ji FJ, Zang HL, et al. Activation of the miR-34a/SIRT1/p53 Signaling Pathway Contributes to the Progress of Liver Fibrosis via Inducing Apoptosis in Hepatocytes but Not in HSCs[J]. PLoS One, 2016, 11: e158657.
|
[28] |
Liu Q, Zhang Y, Yang S, et al. PU. 1-deficient mice are resistant to thioacetamide-induced hepatic fibrosis: PU. 1 finely regulates Sirt1 expression via transcriptional promotion of miR-34a and miR-29c in hepatic stellate cells[J]. Biosci Rep, 2017, 37: BSR20170926. DOI: 10.1042/BSR20170926
|
[29] |
Li X, Zhang W, Xu K, et al. miR-34a promotes liver fibrosis in patients with chronic hepatitis via mediating Sirt1/p53 signaling pathway[J]. Pathol Res Pract, 2020, 216: 152876. DOI: 10.1016/j.prp.2020.152876
|
[30] |
Messner CJ, Schmidt S, Ozkul D, et al. Identification of miR-199a-5p, miR-214-3p and miR-99b-5p as Fibrosis-Specific Extracellular Biomarkers and Promoters of HSC Activation[J]. Int J Mol Sci, 2021, 22: 9799. DOI: 10.3390/ijms22189799
|
[31] |
Murakami Y, Toyoda H, Tanaka M, et al. The progression of liver fibrosis is related with overexpression of the miR-199 and 200 families[J]. PLoS One, 2011, 6: e16081. DOI: 10.1371/journal.pone.0016081
|
[32] |
Lino CC, Henaoui IS, Courcot E, et al. miR-199a-5p Is upregulated during fibrogenic response to tissue injury and mediates TGFbeta-induced lung fibroblast activation by targeting caveolin-1[J]. PLoS Genet, 2013, 9: e1003291. DOI: 10.1371/journal.pgen.1003291
|
[33] |
Yang X, Ma L, Wei R, et al. Twist1-induced miR-199a-3p promotes liver fibrosis by suppressing caveolin-2 and activating TGF-beta pathway[J]. Signal Transduct Target Ther, 2020, 5: 75. DOI: 10.1038/s41392-020-0169-z
|
[34] |
Pineau P, Volinia S, Mcjunkin K, et al. miR-221 overexpression contributes to liver tumorigenesis[J]. Proc Natl Acad Sci USA, 2010, 107: 264-269. DOI: 10.1073/pnas.0907904107
|
[35] |
Ogawa T, Enomoto M, Fujii H, et al. MicroRNA-221/222 upregulation indicates the activation of stellate cells and the progression of liver fibrosis[J]. Gut, 2012, 61: 1600-1609. DOI: 10.1136/gutjnl-2011-300717
|
[36] |
Galardi S, Mercatelli N, Farace M G, et al. NF-κB and c-Jun induce the expression of the oncogenic miR-221 and miR-222 in prostate carcinoma and glioblastoma cells[J]. Nucleic Acids Res, 2011, 39: 3892-3902. DOI: 10.1093/nar/gkr006
|
[37] |
Sehgal M, Zeremski M, Talal AH, et al. IFN-alpha-Induced Downregulation of miR-221 in Dendritic Cells: Implications for HCV Pathogenesis and Treatment[J]. J Interferon Cytokine Res, 2015, 35: 698-709. DOI: 10.1089/jir.2014.0211
|
[38] |
Mafanda EK, Kandhi R, Bobbala D, et al. Essential role of suppressor of cytokine signaling 1 (SOCS1) in hepatocytes and macrophages in the regulation of liver fibrosis[J]. Cytokine, 2019, 124: 154501. DOI: 10.1016/j.cyto.2018.07.032
|
[39] |
Jiang X, Jiang L, Shan A, et al. Targeting hepatic miR-221/222 for therapeutic intervention of nonalcoholic steatohepatitis in mice[J]. EBioMedicine, 2018, 37: 307-321. DOI: 10.1016/j.ebiom.2018.09.051
|
[40] |
Markovic J, Sharma AD, Balakrishnan A. MicroRNA-221: A Fine Tuner and Potential Biomarker of Chronic Liver Injury[J]. Cells, 2020, 9: 1767. DOI: 10.3390/cells9081767
|
[41] |
Blaya D, Aguilar-Bravo B, Hao F, et al. Expression of microRNA-155 in inflammatory cells modulates liver injury[J]. Hepatology, 2018, 68: 691-706.
|
[42] |
Bala S, Csak T, Saha B, et al. The pro-inflammatory effects of miR-155 promote liver fibrosis and alcohol-induced steatohepatitis[J]. J Hepatol, 2016, 64: 1378-1387.
|
[43] |
Bala S, Ganz M, Babuta M, et al. Steatosis, inflamma-some upregulation, and fibrosis are attenuated in miR-155 deficient mice in a high fat-cholesterol-sugar diet-induced model of NASH[J]. Lab Invest, 2021, 101: 1540-1549. DOI: 10.1038/s41374-021-00626-1
|
[44] |
Dai W, Zhao J, Tang N, et al. MicroRNA-155 attenuates activation of hepatic stellate cell by simultaneously prevent-ing EMT process and ERK1 signalling pathway[J]. Liver Int, 2015, 35: 1234-1243. DOI: 10.1111/liv.12660
|
[45] |
Niu LJ, Zhang YM, Huang T, et al. Exosomal microRNA-155 as a biomarker for hepatic fibrosis diagnosis and progression[J]. Ann Transl Med, 2021, 9: 137. DOI: 10.21037/atm-20-7787
|
[46] |
Wang Y, Luo J, Zhang H, et al. microRNAs in the Same Clusters Evolve to Coordinately Regulate Functionally Related Genes[J]. Mol Biol Evol, 2016, 33: 2232-2247. DOI: 10.1093/molbev/msw089
|
[47] |
Wan LY, Peng H, Ni YR, et al. The miR-23b/27b/24-1 Cluster Inhibits Hepatic Fibrosis by Inactivating Hepatic Stellate Cells[J]. Cell Mol Gastroenterol Hepatol, 2022, 13: 1393-1412. DOI: 10.1016/j.jcmgh.2022.01.016
|
[48] |
Hong SW, Jung KH, Zheng HM, et al. The protective effect of resveratrol on dimethylnitrosamine-induced liver fibrosis in rats[J]. Arch Pharm Res, 2010, 33: 601-609. DOI: 10.1007/s12272-010-0415-y
|
[49] |
Pan Y, Wang J, He L, et al. MicroRNA-34a Promotes EMT and Liver Fibrosis in Primary Biliary Cholangitis by Regulating TGF-beta1/smad Pathway[J]. J Immunol Res, 2021, 2021: 6890423.
|
[50] |
Harrison SA, Ratziu V, Boursier J, et al. A blood-based biomarker panel (NIS4) for non-invasive diagnosis of non-alcoholic steatohepatitis and liver fibrosis: a prospective derivation and global validation study[J]. Lancet Gastroenterol Hepatol, 2020, 5: 970-985. DOI: 10.1016/S2468-1253(20)30252-1
|
[51] |
Hong DS, Kang YK, Borad M, et al. Phase 1 study of MRX34, a liposomal miR-34a mimic, in patients with advanced solid tumours[J]. Br J Cancer, 2020, 122: 1630-1637. DOI: 10.1038/s41416-020-0802-1
|
[52] |
陆伦根, 尤红, 谢渭芬, 等. 肝纤维化诊断及治疗共识(2019年)[J]. 实用肝脏病杂志, 2019, 22: 793-803. https://www.cnki.com.cn/Article/CJFDTOTAL-GBSY201906006.htm
|
[53] |
Hassan S, Syed S, Kehar SI. Review of diagnostic techniques of hepatic fibrosis[J]. J Pak Med Assoc, 2014, 64: 941-945.
|
[54] |
Dana J, Venkatasamy A, Saviano A, et al. Conventional and artificial intelligence-based imaging for biomarker discovery in chronic liver disease[J]. Hepatol Int, 2022, 16: 509-522. DOI: 10.1007/s12072-022-10303-0
|
[55] |
Khvorova A, Watts JK. The chemical evolution of oligonucleotide therapies of clinical utility[J]. Nat Biotechnol, 2017, 35: 238-248. DOI: 10.1038/nbt.3765
|
[56] |
Yamamoto T, Mukai Y, Wada F, et al. Highly Potent GalNAc-Conjugated Tiny LNA Anti-miRNA-122 Antisense Oligonucleotides[J]. Pharmaceutics, 2021, 13: 817. DOI: 10.3390/pharmaceutics13060817
|
[1] | WANG Jun, MENG Juan. Targeted Therapy for Rheumatoid Arthritis in the New Era[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 19-27. DOI: 10.12290/xhyxzz.2024-0842 |
[2] | QIN Jing, ZHU Qingli. Early Efficacy Assessment of Targeted Therapy for Crohn's Disease by Ultrasound[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 130-134. DOI: 10.12290/xhyxzz.2023-0306 |
[3] | YANG Xiaoxi, TIAN Xinping, LI Mengtao, LENG Xiaomei, ZHAO Yan, ZENG Xiaofeng. Interpretation on the Consensus on Targeted Drug Therapy for Spondyloarthritis[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 58-67. DOI: 10.12290/xhyxzz.2023-0391 |
[4] | CHEN Wenlin, WANG Yuekun, LIU Qianshu, YE Liguo, ZHENG Zhiyao, ZHANG Xin, GONG Le, CAO Yaning, SONG Yixuan, GUO Xiaopeng, WANG Yu, MA Wenbin. Annual Research Progress of Glioma in China in 2022[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 983-990. DOI: 10.12290/xhyxzz.2023-0321 |
[5] | SHEN Tian, WU Xiaochuan. Systemic Lupus Erythematosus: from Pathogenesis to New Targeted Therapies[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 234-240. DOI: 10.12290/xhyxzz.2022-0694 |
[6] | LI Guo-yu, HE Ming. Research Progress of Targeted Therapy at Rare Targets for Non-small Cell Lung Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 268-274. DOI: 10.3969/j.issn.1674-9081.2020.00.019 |
[7] | Hua-xia YANG, Feng-chun ZHANG. New Biologic Targets for Systemic Lupus Erythematosus: Hope and Challenge[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 241-246. DOI: 10.3969/j.issn.1674-9081.20200091 |
[8] | Ying XU, Yan LIN, Chang-jun WANG, Jia-lin ZHAO, Qiang SUN. Whether Elderly Patients with Her-2 Positive Breast Cancer but Without Heart Disease Should Receive Targeted Therapy?[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(4): 414-418. DOI: 10.3969/j.issn.1674-9081.2019.04.020 |
[9] | Su-jie ZHANG, Hua-qi YIN, Xiong-jun YE, Tao XU. Role of Musashi-2 in the Occurrence and Development and as the Diagnostic and Therapeutic Target of Malignant Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 289-293. DOI: 10.3969/j.issn.1674-9081.2017.05.018 |
[10] | Lei TANG, Hua-dan XUE, Zheng-yu JIN. Radiological Evaluation of the Response of Abdominal Tumors to Targeted Therapy: Current Status and Prospect[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 82-89. DOI: 10.3969/j.issn.1674-9081.2017.03.001 |