Citation: | MOU Xingjian, FU Wenting, LI Sen, LIU Tao, ZHANG Fulong, SONG Yuan, LI Qiang, LU Juan. Research Progress on the Role of Mitophagy in Diabetic Ulcer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1389-1394. DOI: 10.12290/xhyxzz.2024-0154 |
Diabetic ulcer (DU), one of the common and serious complications in patients with diabetes mellitus, often leads to infection, necrosis and amputation, and has a long and costly treatment period. Because of DU's unclear healing mechanism and the difficulty of delayed healing, its treatment and management have been a major challenge in clinical medicine. In recent years, the potential role of mitochondrial autophagy in DU has become a research hotspot with the in-depth study of mitochondrial autophagy mechanism. Previous studies have shown that mitochondrial autophagy is an important intracellular self-repair mechanism that plays a crucial role in maintaining cellular health and functional stability. During the development of DU, mitochondrial autophagy plays multiple roles in attenuating oxidative stress and inflammatory responses, maintaining mitochondrial functional homeostasis, influencing cell proliferation and repair capacity during DU healing, promoting DU healing, and enhancing antimicrobial capacity. In this paper, we illustrate the multiple roles played by mitochondrial autophagy in DU prevention and treatment, as well as the potential applications of mitochondrial autophagy in DU therapy. It is expected to provide a basis for the clinical application of mitochondrial autophagy in DU treatment, and provide more effective strategies and solutions for the treatment of DU.
[1] |
Armstrong D G, Tan T W, Boulton A J M, et al. Diabetic foot ulcers: a review[J]. JAMA, 2023, 330(1): 62-75. DOI: 10.1001/jama.2023.10578
|
[2] |
Reardon R, Simring D, Kim B, et al. The diabetic foot ulcer[J]. Aust J Gen Pract, 2020, 49(5): 250-255. DOI: 10.31128/AJGP-11-19-5161
|
[3] |
Hicks C W, Selvin E. Epidemiology of peripheral neuro-pathy and lower extremity disease in diabetes[J]. Curr Diab Rep, 2019, 19(10): 86. DOI: 10.1007/s11892-019-1212-8
|
[4] |
魏晓涛, 何志军, 刘涛, 等. 消肿止痛合剂对糖尿病溃疡模型大鼠创面愈合的影响[J]. 中国病理生理杂志, 2023, 39(5): 902-909. DOI: 10.3969/j.issn.1000-4718.2023.05.016
Wei X T, He Z J, Liu T, et al. Effect of Xiaozhong-Zhitong mixture on wound healing in rats with diabetic ulcer[J]. Chin J Pathophysiol, 2023, 39(5): 902-909. DOI: 10.3969/j.issn.1000-4718.2023.05.016
|
[5] |
郭光华, 朱峰, 闵定宏, 等. 糖尿病足合并难愈性创面外科治疗全国专家共识(2020版)[J]. 中华损伤与修复杂志(电子版), 2020, 15(4): 256-263. DOI: 10.3877/cma.j.issn.1673-9450.2020.04.005
Guo G H, Zhu F, Min D H, et al. National expert consensus on surgical treatment of diabetic foot complicated with refractory wounds (2020 version)[J]. Chin J Inj Repair Wound Heal Electron Ed, 2020, 15(4): 256-263. DOI: 10.3877/cma.j.issn.1673-9450.2020.04.005
|
[6] |
Yang L, Rong G C, Wu Q N. Diabetic foot ulcer: Challenges and future[J]. World J Diabetes, 2022, 13(12): 1014-1034. DOI: 10.4239/wjd.v13.i12.1014
|
[7] |
McDermott K, Fang M, Boulton A J M, et al. Etiology, epidemiology, and disparities in the burden of diabetic foot ulcers[J]. Diabetes Care, 2023, 46(1): 209-221. DOI: 10.2337/dci22-0043
|
[8] |
Stancu B, Ilyés T, Farcas M, et al. Diabetic foot complications: a retrospective cohort study[J]. Int J Environ Res Public Health, 2022, 20(1): 187. DOI: 10.3390/ijerph20010187
|
[9] |
Annesley S J, Fisher P R. Mitochondria in health and disease[J]. Cells, 2019, 8(7): 680. DOI: 10.3390/cells8070680
|
[10] |
魏晓涛, 刘涛, 何志军, 等. 自噬在糖尿病创面愈合中的作用及中药干预研究进展[J]. 中国中药杂志, 2023, 48(7): 1724-1730.
Wei X T, Liu T, He Z J, et al. Research progress in role of autophagy in diabetic wound healing and traditional Chinese medicine intervention[J]. China J Chin Mater Med, 2023, 48(7): 1724-1730.
|
[11] |
Li A Q, Gao M, Liu B L, et al. Mitochondrial autophagy: molecular mechanisms and implications for cardiovascular disease[J]. Cell Death Dis, 2022, 13(5): 444. DOI: 10.1038/s41419-022-04906-6
|
[12] |
Miao F, Li X X, Wang C L, et al. Bioinformatics analysis of differentially expressed genes in diabetic foot ulcer and preliminary experimental verification[J]. Ann Transl Med, 2023, 11(2): 89. DOI: 10.21037/atm-22-6437
|
[13] |
Chen W, Wu Y X, Li L, et al. Adenosine accelerates the healing of diabetic ischemic ulcers by improving autophagy of endothelial progenitor cells grown on a biomaterial[J]. Sci Rep, 2015, 5: 11594. DOI: 10.1038/srep11594
|
[14] |
Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J, 2021, 40(3): e104705. DOI: 10.15252/embj.2020104705
|
[15] |
Giacomello M, Pyakurel A, Glytsou C, et al. The cell biology of mitochondrial membrane dynamics[J]. Nat Rev Mol Cell Biol, 2020, 21(4): 204-224. DOI: 10.1038/s41580-020-0210-7
|
[16] |
Schlame M. Protein crowding in the inner mitochondrial membrane[J]. Biochim Biophys Acta Bioenerg, 2021, 1862(1): 148305. DOI: 10.1016/j.bbabio.2020.148305
|
[17] |
Almannai M, El-Hattab A W, Azamian M S, et al. Mitochondrial DNA maintenance defects: potential therapeutic strategies[J]. Mol Genet Metab, 2022, 137(1/2): 40-48.
|
[18] |
Jiang G Y, Jiang T, Chen J, et al. Mitochondrial dysfunction and oxidative stress in diabetic wound[J]. J Biochem Mol Toxicol, 2023, 37(7): e23407. DOI: 10.1002/jbt.23407
|
[19] |
Xu Z, Liu Y J, Ma R, et al. Thermosensitive hydrogel incorporating prussian blue nanoparticles promotes diabetic wound healing via ROS scavenging and mitochondrial function restoration[J]. ACS Appl Mater Interfaces, 2022, 14(12): 14059-14071. DOI: 10.1021/acsami.1c24569
|
[20] |
洪恺祺, 陈丽, 朱镇华, 等. 肉桂醛通过PINK1/Parkin信号通路介导的线粒体自噬促进糖尿病大鼠创面愈合机制[J]. 中国实验方剂学杂志, 2023, 29(16): 134-143.
Hong K Q, Chen L, Zhu Z H, et al. Mechanism of cinnamaldehyde in promoting wound healing in diabetes rats via PINK1/Parkin-mediated mitochondrial autophagy[J]. Chin J Exp Tradit Med Form, 2023, 29(16): 134-143.
|
[21] |
Bharath L P, Agrawal M, McCambridge G, et al. Metformin enhances autophagy and normalizes mitochondrial function to alleviate aging-associated inflammation[J]. Cell Metab, 2020, 32(1): 44-55. e6. DOI: 10.1016/j.cmet.2020.04.015
|
[22] |
Wang R, Wang G H. Autophagy in mitochondrial quality control[J]. Adv Exp Med Biol, 2019, 1206: 421-434.
|
[23] |
Garza-Lombó C, Pappa A, Panayiotidis M I, et al. Redox homeostasis, oxidative stress and mitophagy[J]. Mitochondrion, 2020, 51: 105-117. DOI: 10.1016/j.mito.2020.01.002
|
[24] |
Sifuentes-Franco S, Pacheco-Moisés F P, Rodríguez-Carrizalez A D, et al. The role of oxidative stress, mitochondrial function, and autophagy in diabetic polyneuropathy[J]. J Diabetes Res, 2017, 2017: 1673081.
|
[25] |
Abate M, Festa A, Falco M, et al. Mitochondria as playmakers of apoptosis, autophagy and senescence[J]. Semin Cell Dev Biol, 2020, 98: 139-153. DOI: 10.1016/j.semcdb.2019.05.022
|
[26] |
王庚新, 张春玲, 赵伟, 等. 基于PINK1/Parkin通路介导的线粒体自噬探讨中药丹黄散对糖尿病溃疡的促愈机制[J]. 护理研究, 2022, 36(24): 4370-4375. DOI: 10.12102/j.issn.1009-6493.2022.24.008
Wang G X, Zhang C L, Zhao W, et al. Promotion mechanism of Chinese medicine Danhuang powder on healing diabetes ulcers based on mitophagy through the PINK1/Parkin pathway[J]. Chin Nurs Res, 2022, 36(24): 4370-4375. DOI: 10.12102/j.issn.1009-6493.2022.24.008
|
[27] |
张云, 张春玲, 赵伟, 等. 丹黄散调控线粒体自噬途径治疗糖尿病足溃疡的机制研究[J]. 现代中西医结合杂志, 2023, 32(3): 315-319.
Zhang Y, Zhang C L, Zhao W, et al. Mechanism of Dan-Huang-San powder in the treatment of diabetic foot ulcers through regulating mitophagy autophagy pathway[J]. Mod J Integr Tradit Chin West Med, 2023, 32(3): 315-319.
|
[28] |
刘海艳, 张春玲, 赵伟, 等. 基于PINK1/Parkin信号通路探讨丹黄散在糖尿病小鼠溃疡创面愈合中的作用[J]. 陕西中医, 2023, 44(4): 433-436. DOI: 10.3969/j.issn.1000-7369.2023.04.005
Liu H Y, Zhang C L, Zhao W, et al. Effect of Danhuang powder on ulcer wound healing in diabetic mice based on PINK1/Parkin signaling pathway[J]. Shaanxi J Tradit Chin Med, 2023, 44(4): 433-436. DOI: 10.3969/j.issn.1000-7369.2023.04.005
|
[29] |
Deretic V. Autophagy in inflammation, infection, and immunometabolism[J]. Immunity, 2021, 54(3): 437-453. DOI: 10.1016/j.immuni.2021.01.018
|
[30] |
Xu Y, Shen J, Ran Z H. Emerging views of mitophagy in immunity and autoimmune diseases[J]. Autophagy, 2020, 16(1): 3-17. DOI: 10.1080/15548627.2019.1603547
|
[31] |
Kim T S, Jin Y B, Kim Y S, et al. SIRT3 promotes antimycobacterial defenses by coordinating mitochondrial and autophagic functions[J]. Autophagy, 2019, 15(8): 1356-1375. DOI: 10.1080/15548627.2019.1582743
|
[32] |
Goodall E A, Kraus F, Harper J W. Mechanisms underlying ubiquitin-driven selective mitochondrial and bacterial autophagy[J]. Mol Cell, 2022, 82(8): 1501-1513. DOI: 10.1016/j.molcel.2022.03.012
|
[33] |
Wang H R, Luo W J, Chen H Y, et al. Mitochondrial dynamics and mitochondrial autophagy: molecular structure, orchestrating mechanism and related disorders[J]. Mitochondrion, 2024, 75: 101847. DOI: 10.1016/j.mito.2024.101847
|
[34] |
Chen M, Chen Z H, Wang Y Y, et al. Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy[J]. Autophagy, 2016, 12(4): 689-702. DOI: 10.1080/15548627.2016.1151580
|
[35] |
Deng C, Dong K K, Liu Y J, et al. Hypoxic mesen-chymal stem cell-derived exosomes promote the survival of skin flaps after ischaemia-reperfusion injury via mTOR/ULK1/FUNDC1 pathways[J]. J Nanobiotechnology, 2023, 21(1): 340. DOI: 10.1186/s12951-023-02098-5
|
[36] |
Ney P A. Mitochondrial autophagy: origins, significance, and role of BNIP3 and NIX[J]. Biochim Biophys Acta, 2015, 1853(10 Pt B): 2775-2783.
|
[37] |
Niu C, Chen Z W, Kim K T, et al. Metformin alleviates hyperglycemia-induced endothelial impairment by downregulat-ing autophagy via the Hedgehog pathway[J]. Autophagy, 2019, 15(5): 843-870. DOI: 10.1080/15548627.2019.1569913
|
[38] |
Aguilera M O, Robledo E, Melani M, et al. FKBP8 is a novel molecule that participates in the regulation of the autophagic pathway[J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(5): 119212. DOI: 10.1016/j.bbamcr.2022.119212
|
[39] |
Shirane-Kitsuji M, Nakayama K I. Mitochondria: FKBP38 and mitochondrial degradation[J]. Int J Biochem Cell Biol, 2014, 51: 19-22. DOI: 10.1016/j.biocel.2014.03.007
|
[40] |
Zacharioudakis E, Gavathiotis E. Mitochondrial dynamics proteins as emerging drug targets[J]. Trends Pharmacol Sci, 2023, 44(2): 112-127. DOI: 10.1016/j.tips.2022.11.004
|
[41] |
Lee S, Lee S, Lee S J, et al. Inhibition of mitoNEET induces Pink1-Parkin-mediated mitophagy[J]. BMB Rep, 2022, 55(7): 354-359. DOI: 10.5483/BMBRep.2022.55.7.040
|
[1] | WANG Yajuan, WANG Yuan, REN Xinyu. Correlation of CD117 and DOG1 Expression with the Clinicopathological Features and Prognosis in Triple-negative Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 616-623. DOI: 10.12290/xhyxzz.2023-0454 |
[2] | ZHOU Gaosheng, WANG Xiaoting, LIU Jingjing, ZHANG Hongmin, ZHANG Qing, LIU Dawei. Relationship between Oxygen Extraction Ratio and Prognosis in Septic Shock Patients During Early Resuscitation[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1217-1223. DOI: 10.12290/xhyxzz.2023-0008 |
[3] | LIU Huan, HUANG Xiaoling, DAI Mengying, GUO Jiejie, GAO feng. Clinical Characteristics and Inflammatory Markers of Omicron BA.5.2 Variant Infection in Hospitalized Patients and Their Predictive Role in Disease Prognosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 1038-1045. DOI: 10.12290/xhyxzz.2023-0055 |
[4] | ZHANG Ning, ZHU Wen-ling, LIU Xiao-hong, CHEN Wei, KANG Jun-ren, ZHU Ming-lei, TIAN Ran. Impact of Frailty on the Short-term Prognosis of Hospitalized Elderly Patients with Coronary Heart Disease:A Prospective Cohort Study[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 59-66. DOI: 10.12290/xhyxzz.20190150 |
[5] | Jian-hua DENG, Han-zhong LI. Clinical Diagnosis and Prognosis of Metastatic Pheochromocytoma and Paraganglioma[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 654-659. DOI: 10.3969/j.issn.1674-9081.2019.06.018 |
[6] | Jia-qi ZHANG, Lei LIU, Gui-ge WANG, Wen-liang BAI, Shan-qing LI. Clinical Pathological Features and Prognosis of Non-small Cell Lung Cancer with Skip N2 Lymph Node Metastasis[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 272-277. DOI: 10.3969/j.issn.1674-9081.2019.03.015 |
[7] | Ran ZHOU, Tong-juan ZOU, Wan-hong YIN, Yao QIN, Yi LI, Jing YANG, Yan KANG. nfluence of Mitral Regurgitation on the Prognosis of Patients with Septic Shock[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 426-430. DOI: 10.3969/j.issn.1674-9081.2018.05.010 |
[8] | Cheng HUANG, Ye-ye CHEN, Shan-qing LI, Xiao-yun ZHOU, Hong-sheng LIU, Li LI, Ying-zhi QIN, Jia HE, Dong-jie MA. Ectopic Adrenocorticotropic Hormone Syndrome Caused by Thoracic Neuroendocrine Tumors: Surgical Treatment and Prognosis Factors[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 147-153. DOI: 10.3969/j.issn.1674-9081.2017.03.012 |
[9] | Qing-yuan DENG, Yi-cong YE, Ying ZHONG, Miao-miao SHENG, Feng-ming HUANG, Cheng-yu JIANG, Shu-yang ZHANG. Angiotensin Ⅱ in Predicting the In-hospital Prognosis of Patients Undergoing Elective Percutaneous Coronary Intervention[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(1): 13-17. DOI: 10.3969/j.issn.1674-9081.2016.01.003 |
[10] | Yu YANG, Quan-zong MAO, Han-zhong LI, Zhi-gang JI, Wei-gang YAN, Shi RONG, Guang-hua LIU, Wei-feng XU, He XIAO, Hui-jun WANG. Clinical Features and Prognosis of Paraneoplastic Syndromes in Renal Malignancies[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(2): 195-199. DOI: 10.3969/j.issn.1674-9081.2012.02.014 |