Citation: | YANG Mengjiao, YUAN Hao, ZHENG Ya, WANG Yuping, GUO Qinghong. Research Progress of ADAM17 in Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 375-381. DOI: 10.12290/xhyxzz.2023-0383 |
[1] |
Sung H, Ferlay J, Siegel R L, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2021, 71(3): 209-249. DOI: 10.3322/caac.21660
|
[2] |
Qiu H B, Cao S M, Xu R H. Cancer incidence, mortality, and burden in China: a time-trend analysis and comparison with the United States and United Kingdom based on the global epidemiological data released in 2020[J]. Cancer Commun (Lond), 2021, 41(10): 1037-1048. DOI: 10.1002/cac2.12197
|
[3] |
帕孜来提·亚森, 袁浩, 路红, 等. 胃癌靶向治疗药物临床实验研究进展[J]. 中国临床药理学与治疗学, 2021, 26(4): 454-461. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202104016.htm
Yasen P Z L T, Yuan H, Lu H, et al. Research progress in clinical trials of targeted drugs for gastric cancer[J]. Chin J Clin Pharmacol Ther, 2021, 26(4): 454-461. https://www.cnki.com.cn/Article/CJFDTOTAL-YLZL202104016.htm
|
[4] |
Nakamura Y, Kawazoe A, Lordick F, et al. Biomarker-targeted therapies for advanced-stage gastric and gastro-oesophageal junction cancers: an emerging paradigm[J]. Nat Rev Clin Oncol, 2021, 18(8): 473-487. DOI: 10.1038/s41571-021-00492-2
|
[5] |
Yang G, Cui M Y, Jiang W B, et al. Molecular switch in human diseases-disintegrin and metalloproteinases, Adam17[J]. Aging (Albany NY), 2021, 13(12): 16859-16872.
|
[6] |
Zunke F, Rose-John S. The shedding protease ADAM17: physiology and pathophysiology[J]. Biochim Biophys Acta Mol Cell Res, 2017, 1864(11 Pt B): 2059-2070.
|
[7] |
Düsterhöft S, Babendreyer A, Giese A A, et al. Status update on iRhom and ADAM17: it's still complicated[J]. Biochim Biophys Acta Mol Cell Res, 2019, 1866(10): 1567-1583. DOI: 10.1016/j.bbamcr.2019.06.017
|
[8] |
Babendreyer A, Rojas-González D M, Giese A A, et al. Differential induction of the ADAM17 regulators iRhom1 and 2 in endothelial cells[J]. Front Cardiovasc Med, 2020, 7: 610344. DOI: 10.3389/fcvm.2020.610344
|
[9] |
Düsterhöft S, Lokau J, Garbers C. The metalloprotease ADAM17 in inflammation and cancer[J]. Pathol Res Pract, 2019, 215(6): 152410. DOI: 10.1016/j.prp.2019.04.002
|
[10] |
Schumacher N, Rose-John S. ADAM17 orchestrates Interleukin-6, TNFα and EGF-R signaling in inflammation and cancer[J]. Biochim Biophys Acta Mol Cell Res, 2022, 1869(1): 119141. DOI: 10.1016/j.bbamcr.2021.119141
|
[11] |
Meng X C, Hu B S, Hossain M M, et al. ADAM17-siRNA inhibits MCF-7 breast cancer through EGFR-PI3K-AKT activation[J]. Int J Oncol, 2016, 49(2): 682-690. DOI: 10.3892/ijo.2016.3536
|
[12] |
Jia D Y, Underwood J, Xu Q P, et al. NOTCH2/NOTCH3/DLL3/MAML1/ADAM17 signaling network is associated with ovarian cancer[J]. Oncol Lett, 2019, 17(6): 4914-4920.
|
[13] |
Rogmans C, Kuhlmann J D, Hugendieck G, et al. ADAM17-a potential blood-based biomarker for detection of early-stage ovarian cancer[J]. Cancers (Basel), 2021, 13(21): 5563. DOI: 10.3390/cancers13215563
|
[14] |
Schmidt S, Schumacher N, Schwarz J, et al. ADAM17 is required for EGF-R-induced intestinal tumors via IL-6 trans-signaling[J]. J Exp Med, 2018, 215(4): 1205-1225. DOI: 10.1084/jem.20171696
|
[15] |
Xiao L J, Lin P, Lin F, et al. ADAM17 targets MMP-2 and MMP-9 via EGFR-MEK-ERK pathway activation to promote prostate cancer cell invasion[J]. Int J Oncol, 2012, 40(5): 1714-1724.
|
[16] |
Mishra H K, Pore N, Michelotti E F, et al. Anti-ADAM17 monoclonal antibody MEDI3622 increases IFNγ production by human NK cells in the presence of antibody-bound tumor cells[J]. Cancer Immunol Immunother, 2018, 67(9): 1407-1416. DOI: 10.1007/s00262-018-2193-1
|
[17] |
Saha N, Xu K, Zhu Z Y, et al. Inhibitory monoclonal antibody targeting ADAM17 expressed on cancer cells[J]. Transl Oncol, 2022, 15(1): 101265. DOI: 10.1016/j.tranon.2021.101265
|
[18] |
Kanda K, Komekado H, Sawabu T, et al. Nardilysin and ADAM proteases promote gastric cancer cell growth by activating intrinsic cytokine signalling via enhanced ectodomain shedding of TNF-α[J]. EMBO Mol Med, 2012, 4(5): 396-411. DOI: 10.1002/emmm.201200216
|
[19] |
Ebi M, Kataoka H, Shimura T, et al. TGFβ induces proHB-EGF shedding and EGFR transactivation through ADAM activation in gastric cancer cells[J]. Biochem Biophys Res Commun, 2010, 402(3): 449-454. DOI: 10.1016/j.bbrc.2010.09.130
|
[20] |
Sun J B, Jiang J L, Lu K Y, et al. Therapeutic potential of ADAM17 modulation in gastric cancer through regulation of the EGFR and TNF-α signalling pathways[J]. Mol Cell Biochem, 2017, 426(1/2): 17-26.
|
[21] |
Kalluri R, Weinberg R A. The basics of epithelial-mesenchymal transition[J]. J Clin Invest, 2009, 119(6): 1420-1428. DOI: 10.1172/JCI39104
|
[22] |
Tsai J H, Yang J. Epithelial-mesenchymal plasticity in carcinoma metastasis[J]. Genes Dev, 2013, 27(20): 2192-2206. DOI: 10.1101/gad.225334.113
|
[23] |
Brabletz S, Schuhwerk H, Brabletz T, et al. Dynamic EMT: a multi-tool for tumor progression[J]. EMBO J, 2021, 40(18): e108647. DOI: 10.15252/embj.2021108647
|
[24] |
Xu M, Zhou H L, Zhang C L, et al. ADAM17 promotes epithelial-mesenchymal transition via TGF-β/Smad pathway in gastric carcinoma cells[J]. Int J Oncol, 2016, 49(6): 2520-2528. DOI: 10.3892/ijo.2016.3744
|
[25] |
周海浪. ADAM17通过TGF-β/Smad通路促进胃癌细胞增殖、迁移和侵袭[D]. 镇江: 江苏大学, 2017.
Zhou H L. ADAM17 promotes the proliferation, migration and invasion via TGF-β/Smad pathway in gastric carcinoma cells[D]. Zhenjiang: Jiangsu University, 2017.
|
[26] |
Gires O, Pan M, Schinke H, et al. Expression and function of epithelial cell adhesion molecule EpCAM: where are we after 40 years?[J]. Cancer Metastasis Rev, 2020, 39(3): 969-987. DOI: 10.1007/s10555-020-09898-3
|
[27] |
Warneke V S, Behrens H M, Haag J, et al. Members of the EpCAM signalling pathway are expressed in gastric cancer tissue and are correlated with patient prognosis[J]. Br J Cancer, 2013, 109(8): 2217-2227. DOI: 10.1038/bjc.2013.536
|
[28] |
Du X, Cheng Z, Wang Y H, et al. Role of Notch signaling pathway in gastric cancer: a meta-analysis of the literature[J]. World J Gastroenterol, 2014, 20(27): 9191-9199.
|
[29] |
Yao Y Z, Ni Y, Zhang J W, et al. The role of Notch signaling in gastric carcinoma: molecular pathogenesis and novel therapeutic targets[J]. Oncotarget, 2017, 8(32): 53839-53853. DOI: 10.18632/oncotarget.17809
|
[30] |
Xu Z, Ran J, Gong K, et al. LncRNA SUMO1P3 regulates the invasion, migration and cell cycle of gastric cancer cells through Wnt/β-catenin signaling pathway[J]. J Recept Signal Transduct Res, 2021, 41(6): 574-581. DOI: 10.1080/10799893.2020.1836494
|
[31] |
Peng Y, Xu Y D, Zhang X J, et al. A novel protein AXIN1-295aa encoded by circAXIN1 activates the Wnt/β-catenin signaling pathway to promote gastric cancer progression[J]. Mol Cancer, 2021, 20(1): 158. DOI: 10.1186/s12943-021-01457-w
|
[32] |
Li W, Wang D G, Sun X, et al. ADAM17 promotes lymph node metastasis in gastric cancer via activation of the Notch and Wnt signaling pathways[J]. Int J Mol Med, 2019, 43(2): 914-926.
|
[33] |
Li Q, Zhang N, Jia Z L, et al. Critical role and regulation of transcription factor FoxM1 in human gastric cancer angiogenesis and progression[J]. Cancer Res, 2009, 69(8): 3501-3509. DOI: 10.1158/0008-5472.CAN-08-3045
|
[34] |
Yang L, Cui M, Zhang L, et al. FOXM1 facilitates gastric cancer cell migration and invasion by inducing Cathepsin D[J]. Oncotarget, 2017, 8(40): 68180-68190. DOI: 10.18632/oncotarget.19254
|
[35] |
房文铮. FoxM1调控ADAM17促进胃癌发生发展的机制研究[D]. 上海: 第二军医大学, 2014.
Fang W Z. FoxMl regulates ADAM17 in promoting the development of gastric cancer[D]. Shanghai: The Second Military Medical University, 2014.
|
[36] |
Fang W Z, Qian J X, Wu Q, et al. ADAM-17 expression is enhanced by FoxM1 and is a poor prognostic sign in gastric carcinoma[J]. J Surg Res, 2017, 220: 223-233. DOI: 10.1016/j.jss.2017.06.032
|
[37] |
Wang H X, Hu L, Zang M D, et al. REG4 promotes peritoneal metastasis of gastric cancer through GPR37[J]. Oncotarget, 2016, 7(19): 27874-27888. DOI: 10.18632/oncotarget.8442
|
[38] |
Liu X, Yao L, Qu J K, et al. Cancer-associated fibroblast infiltration in gastric cancer: the discrepancy in subtypes pathways and immunosuppression[J]. J Transl Med, 2021, 19(1): 325. DOI: 10.1186/s12967-021-03012-z
|
[39] |
Ishimoto T, Miyake K, Nandi T, et al. Activation of transforming growth factor beta 1 signaling in gastric cancer-associated fibroblasts increases their motility, via expression of rhomboid 5 homolog 2, and ability to induce invasiveness of gastric cancer cells[J]. Gastroenterology, 2017, 153(1): 191-204.e16. DOI: 10.1053/j.gastro.2017.03.046
|
[40] |
Chen J T, Yao K H, Hua L, et al. MiR-338-3p inhibits the proliferation and migration of gastric cancer cells by targeting ADAM17[J]. Int J Clin Exp Pathol, 2015, 8(9): 10922-10928.
|
[41] |
AmeliMojarad M, AmeliMojarad M, Pourmahdian A. Cir-cular RNA circ_0051620 sponges miR-338-3p and regulates ADAM17 to promote the gastric cancer progression[J]. Pathol Res Pract, 2022, 233: 153887. DOI: 10.1016/j.prp.2022.153887
|
[42] |
Zhang T C, Zhu W G, Huang M D, et al. Prognostic value of ADAM17 in human gastric cancer[J]. Med Oncol, 2012, 29(4): 2684-2690. DOI: 10.1007/s12032-011-0125-4
|
[43] |
Shou Z X, Jin X, Zhao Z S. Upregulated expression of ADAM17 is a prognostic marker for patients with gastric cancer[J]. Ann Surg, 2012, 256(6): 1014-1022. DOI: 10.1097/SLA.0b013e3182592f56
|
[44] |
Aydin D, Bilici A, Yavuzer D, et al. Prognostic significance of ADAM17 expression in patients with gastric cancer who underwent curative gastrectomy[J]. Clin Transl Oncol, 2015, 17(8): 604-611. DOI: 10.1007/s12094-015-1283-1
|
[45] |
Ni P, Yu M Y, Zhang R G, et al. Prognostic significance of ADAM17 for gastric cancer survival: a meta-analysis[J]. Medicina (Kaunas), 2020, 56(7): 322. DOI: 10.3390/medicina56070322
|
[1] | YANG Wei, CAI Yiyuan, CHEN Jiajia, MAO Run, LINGHU Lang, LYU Sensen, XU Dong. Organizational Readiness for Change and Factors Influencing the Implementation of Shared Medical Appointment for Diabetes in Primary Healthcare Institutions[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 479-491. DOI: 10.12290/xhyxzz.2024-0651 |
[2] | ZHANG Mingzi, SI Loubin, ZHENG Jiaojie, CHEN Jie, WANG Xiaojun, LONG Xiao, XIONG Wei. Data Development Trend of Public/Private Medical Institutions in Chinese Plastic and Aesthetic Major[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1325-1333. DOI: 10.12290/xhyxzz.2024-0486 |
[3] | LIANG Yan. Interpretation on the 2023 AHA/ACC/ACCP/ASPC/NLA/PCNA Guidelines for the Management of Patients with Chronic Coronary Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 312-319. DOI: 10.12290/xhyxzz.2024-0043 |
[4] | HUANG Lu, WU Youbin, NI Yiran, LIU Mengyuan, WU Jiangfeng, ZHANG Yanqiong. The Mechanism of miRNAs in Liver Fibrosis[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1251-1257. DOI: 10.12290/xhyxzz.2023-0125 |
[5] | LIU Xun, RUI Biyu, ZHANG Weijun, YU Hongyi, JIA Yingjie. Analysis and Mitigation Strategies for Failure in Orthopedic Surgical Robots[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1149-1154. DOI: 10.12290/xhyxzz.2023-0367 |
[6] | ZUO Wei, LIU Rongji, NIU Ziran, DU Liping, CHANG Qing, PENG Hua, PAN Hui, ZHANG Bo. Establishment of the Management Systems for Off-label Drug Use in Medical Institution[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 1094-1099. DOI: 10.12290/xhyxzz.2022-0128 |
[7] | YAN Jia, SHEN Le, JIANG Hong, HUANG Yuguang. A Survey of the Current Status of Anesthesiology for Plastic and Cosmetic Surgery in China[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 440-448. DOI: 10.12290/xhyxzz.2022-0107 |
[8] | SUN Xian-song, HOU Xiao-rong, LIU Xiao-ming, ZHOU Bing, CHAI Shuang, HU Ke, QIU Jie, ZHANG Fu-quan. The Experience and Inspiration on the Prevention and Control of Coronavirus Disease 2019 in the Department of Radiotherapy[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 9-12. DOI: 10.12290/xhyxzz.20200242 |
[9] | Hui-zhen JIANG, Lian MA, Wei-guo ZHU. Medical Big Data "Deception" and Strategies[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 542-546. DOI: 10.3969/j.issn.1674-9081.2020.05.009 |
[10] | Shuai TANG, Jie YI, Yu-guang HUANG. Cardiovascular Responses of Intubation with Shikani Seeing Optical Stylet and Macintosh Laryngoscope[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(3): 314-317. DOI: 10.3969/j.issn.1674-9081.2012.03.015 |
1. |
庄海山,甘雨,陈燕红,陈荣. 结合DRG指标评价临床科室运营效率及影响因素研究. 现代医院. 2024(12): 1898-1901 .
![]() |