[1]
|
Pisetsky DS. Pathogenesis of autoimmune disease[J]. Nat Rev Nephrol, 2023, 19: 509-524. |
[2]
|
Hussein HM, Rahal EA. The role of viral infections in the development of autoimmune diseases[J]. Crit Rev Microbiol, 2019, 45: 394-412. doi: 10.1080/1040841X.2019.1614904 |
[3]
|
Goldberg E, Krause I. Infection and type 1 diabetes mellitus-a two edged sword?[J]. Autoimmun Rev, 2009, 8: 682-686. doi: 10.1016/j.autrev.2009.02.017 |
[4]
|
Kumagi T, Abe M, Ikeda Y, et al. Infection as a risk factor in the pathogenesis of primary biliary cirrhosis: pros and cons[J]. Dis Markers, 2010, 29: 313-321. doi: 10.1155/2010/791310 |
[5]
|
Khalesi Z, Tamrchi V, Razizadeh MH, et al. Association between human herpesviruses and multiple sclerosis: A systematic review and meta-analysis[J]. Microb Pathog, 2023, 177: 106031. doi: 10.1016/j.micpath.2023.106031 |
[6]
|
Quaglia M, Merlotti G, De Andrea M, et al. Viral Infections and Systemic Lupus Erythematosus: New Players in an Old Story[J]. Viruses, 2021, 13: 277. doi: 10.3390/v13020277 |
[7]
|
Gremese E, Tolusso B, Bruno D, et al. Infectious agents breaking the immunological tolerance: The holy grail in rheumatoid arthritis reconsidered[J]. Autoimmun Rev, 2022, 21: 103102. doi: 10.1016/j.autrev.2022.103102 |
[8]
|
Cheng L, Zhan H, Liu Y, et al. Infectious agents and pathogenesis of Behçet's disease: An extensive review[J]. Clin Immunol, 2023, 251: 109631. doi: 10.1016/j.clim.2023.109631 |
[9]
|
Soldan SS, Lieberman PM. Epstein-Barr virus and multiple sclerosis[J]. Nat Rev Microbiol, 2023, 21: 51-64. doi: 10.1038/s41579-022-00770-5 |
[10]
|
Björk A, Mofors J, Wahren-Herlenius M. Environmental factors in the pathogenesis of primary Sjögren's syndrome[J]. J Intern Med, 2020, 287: 475-492. doi: 10.1111/joim.13032 |
[11]
|
Rojas M, Restrepo-Jiménez P, Monsalve DM, et al. Molecular mimicry and autoimmunity[J]. J Autoimmun, 2018, 95: 100-123. doi: 10.1016/j.jaut.2018.10.012 |
[12]
|
Cunningham MW. Molecular Mimicry, Autoimmunity, and Infection: The Cross-Reactive Antigens of Group A Streptococci and their Sequelae[J]. Microbiol Spectr, 2019, 7: 10.1128/microbiolspec.GPP3-0045-2018. doi: 10.1128/microbiolspec.GPP3-0045-2018 |
[13]
|
Lee H, Jeong S, Shin EC. Significance of bystander T cell activation in microbial infection[J]. Nat Immunol, 2022, 23: 13-22. doi: 10.1038/s41590-021-00985-3 |
[14]
|
Cornaby C, Gibbons L, Mayhew V, et al. B cell epitope spreading: mechanisms and contribution to autoimmune diseases[J]. Immunol Lett, 2015, 163: 56-68. doi: 10.1016/j.imlet.2014.11.001 |
[15]
|
Christen U. Pathogen infection and autoimmune disease[J]. Clin Exp Immunol, 2019, 195: 10-14. |
[16]
|
Nekoua MP, Alidjinou EK, Hober D. Persistent coxsackievirus B infection and pathogenesis of type 1 diabetes mellitus[J]. Nat Rev Endocrinol, 2022, 18: 503-516. doi: 10.1038/s41574-022-00688-1 |
[17]
|
Carré A, Vecchio F, Flodström-Tullberg M, et al. Coxsackievirus and Type 1 Diabetes: Diabetogenic Mechanisms and Implications for Prevention[J]. Endocr Rev, 2023, 44: 737-751. doi: 10.1210/endrev/bnad007 |
[18]
|
Root-Bernstein R, Chiles K, Huber J, et al. Clostridia and Enteroviruses as Synergistic Triggers of Type 1 Diabetes Mellitus[J]. Int J Mol Sci, 2023, 24: 8336. doi: 10.3390/ijms24098336 |
[19]
|
Prince MI, Ducker SJ, James OF. Case-control studies of risk factors for primary biliary cirrhosis in two United Kingdom populations[J]. Gut, 2010, 59: 508-512. doi: 10.1136/gut.2009.184218 |
[20]
|
Tanaka A, Leung PSC, Gershwin ME. Pathogen infections and primary biliary cholangitis[J]. Clin Exp Immunol, 2019, 195: 25-34. |
[21]
|
Bjornevik K, Cortese M, Healy BC, et al. Longitudinal analysis reveals high prevalence of Epstein-Barr virus associated with multiple sclerosis[J]. Science, 2022, 375: 296-301. doi: 10.1126/science.abj8222 |
[22]
|
Robinson WH, Steinman L. Epstein-Barr virus and multiple sclerosis[J]. Science, 2022, 375: 264-265. doi: 10.1126/science.abm7930 |
[23]
|
He R, Du Y, Wang C. Epstein-Barr virus infection: the leading cause of multiple sclerosis[J]. Signal Transduct Target Ther, 2022, 7: 239. doi: 10.1038/s41392-022-01100-0 |
[24]
|
Rostgaard K, Nielsen NM, Melbye M, et al. Siblings reduce multiple sclerosis risk by preventing delayed primary Epstein-Barr virus infection[J]. Brain, 2023, 146: 1993-2002. doi: 10.1093/brain/awac401 |
[25]
|
Afrasiabi A, Keane JT, Ong LTC, et al. Genetic and transcriptomic analyses support a switch to lytic phase in Epstein Barr virus infection as an important driver in developing Systemic Lupus Erythematosus[J]. J Autoimmun, 2022, 127: 102781. doi: 10.1016/j.jaut.2021.102781 |
[26]
|
Harley JB, James JA. Epstein-Barr virus infection induces lupus autoimmunity[J]. Bull NYU Hosp Jt Dis, 2006, 64: 45-50. |
[27]
|
Reis AD, Mudinutti C, de Freitas Peigo M, et al. Active human herpesvirus infections in adults with systemic lupus erythematosus and correlation with the SLEDAI score[J]. Adv Rheumatol, 2020, 60: 42. doi: 10.1186/s42358-020-00144-6 |
[28]
|
Mahroum N, Elsalti A, Shoenfeld Y. Herpes simplex virus and SLE: Though uncommon yet with significant implications[J]. J Med Virol, 2023, 95: e28689. doi: 10.1002/jmv.28689 |
[29]
|
Tomofuji Y, Maeda Y, Oguro-Igashira E, et al. Metagenome- wide association study revealed disease-specific landscape of the gut microbiome of systemic lupus erythematosus in Japanese[J]. Ann Rheum Dis, 2021, 80: 1575-1583. doi: 10.1136/annrheumdis-2021-220687 |
[30]
|
Aletaha D, Smolen JS. Diagnosis and Management of Rheumatoid Arthritis: A Review[J]. JAMA, 2018, 320: 1360-1372. doi: 10.1001/jama.2018.13103 |
[31]
|
Maeda Y, Kurakawa T, Umemoto E, et al. Dysbiosis Contributes to Arthritis Development via Activation of Autoreac-tive T Cells in the Intestine[J]. Arthritis Rheumatol, 2016, 68: 2646-2661. doi: 10.1002/art.39783 |
[32]
|
Wegner N, Wait R, Sroka A, et al. Peptidylarginine deiminase from Porphyromonas gingivalis citrullinates human fibrinogen and α-enolase: implications for autoimmunity in rheumatoid arthritis[J]. Arthritis Rheum, 2010, 62: 2662-2672. doi: 10.1002/art.27552 |
[33]
|
Jiang L, Shang M, Yu S, et al. A high-fiber diet synergizes with Prevotella copri and exacerbates rheumatoid arthritis[J]. Cell Mol Immunol, 2022, 19: 1414-1424. doi: 10.1038/s41423-022-00934-6 |
[34]
|
Zheng Z, Sohn S, Ahn KJ, et al. Serum reactivity against herpes simplex virus type 1 UL48 protein in Behçet's disease patients and a Behçet's disease-like mouse model[J]. Acta Derm Venereol, 2015, 95: 952-958. doi: 10.2340/00015555-2127 |
[35]
|
Silva NSM, Rodrigues LFC, Dores-Silva PR, et al. Structural, thermodynamic and functional studies of human 71 kDa heat shock cognate protein (HSPA8/hHsc70)[J]. Biochim Biophys Acta Proteins Proteom, 2021, 1869: 140719. doi: 10.1016/j.bbapap.2021.140719 |
[36]
|
Yang TH, Aosai F, Norose K, et al. Heat shock cognate protein 71-associated peptides function as an epitope for Toxoplasma gondii-specific CD4+CTL[J]. Microbiol Immunol, 1997, 41: 553-561. doi: 10.1111/j.1348-0421.1997.tb01891.x |
[37]
|
Cho SB, Zheng Z, Ahn KJ, et al. Serum IgA reactivity against GroEL of Streptococcus sanguinis and human heterogeneous nuclear ribonucleoprotein A2/B1 in patients with Behçet disease[J]. Br J Dermatol, 2013, 168: 977-983. doi: 10.1111/bjd.12128 |
[38]
|
Deniz R, Emrence Z, Yalçinkaya Y, et al. Improved sensitivity of the skin pathergy test with polysaccharide pneumococcal vaccine antigens in the diagnosis of Behçet disease[J]. Rheumatology (Oxford), 2023, 62: 1903-1909. doi: 10.1093/rheumatology/keac543 |
[39]
|
Ouchene L, Muntyanu A, Lavoué J, et al. Toward Understanding of Environmental Risk Factors in Systemic Sclerosis[J]. J Cutan Med Surg, 2021, 25: 188-204. doi: 10.1177/1203475420957950 |
[40]
|
Soffritti I, D'Accolti M, Maccari C, et al. Human Cytomegalovirus and Human Herpesvirus 6 Coinfection of Dermal Fibroblasts Enhances the Pro-Inflammatory Pathway Predisposing to Fibrosis: The Possible Impact on Systemic Sclerosis[J]. Microorganisms, 2022, 10: 1600. doi: 10.3390/microorganisms10081600 |
[41]
|
Arvia R, Zakrzewska K, Giovannelli L, et al. Parvovirus B19 induces cellular senescence in human dermal fibroblasts: putative role in systemic sclerosis-associated fibrosis[J]. Rheumatology (Oxford), 2022, 61: 3864-3874. doi: 10.1093/rheumatology/keab904 |
[42]
|
Kim S, Park HJ, Lee SI. The Microbiome in Systemic Sclerosis: Pathophysiology and Therapeutic Potential[J]. Int J Mol Sci, 2022, 23: 16154. doi: 10.3390/ijms232416154 |
[43]
|
Stec A, Maciejewska M, Paralusz-Stec K, et al. The Gut Microbial Metabolite Trimethylamine N-Oxide is Linked to Specific Complications of Systemic Sclerosis[J]. J Inflamm Res, 2023, 16: 1895-1904. doi: 10.2147/JIR.S409489 |
[44]
|
Mofors J, Arkema EV, Björk A, et al. Infections increase the risk of developing Sjögren's syndrome[J]. J Intern Med, 2019, 285: 670-680. doi: 10.1111/joim.12888 |
[45]
|
Croia C, Astorri E, Murray-Brown W, et al. Implication of Epstein-Barr virus infection in disease-specific autoreactive B cell activation in ectopic lymphoid structures of Sjögren's syndrome[J]. Arthritis Rheumatol, 2014, 66: 2545-2557. doi: 10.1002/art.38726 |
[46]
|
Iwakiri D, Zhou L, Samanta M, et al. Epstein-Barr virus (EBV)-encoded small RNA is released from EBV-infected cells and activates signaling from Toll-like receptor 3[J]. J Exp Med, 2009, 206: 2091-2099. doi: 10.1084/jem.20081761 |
[47]
|
de Paiva CS, Jones DB, Stern ME, et al. Altered Mucosal Microbiome Diversity and Disease Severity in Sjögren Syndrome[J]. Sci Rep, 2016, 6: 23561. doi: 10.1038/srep23561 |
[48]
|
Liu Y, Sawalha AH, Lu Q. COVID-19 and autoimmune diseases[J]. Curr Opin Rheumatol, 2021, 33: 155-162. doi: 10.1097/BOR.0000000000000776 |
[49]
|
Zhang Y, Xiao M, Zhang S, et al. Coagulopathy and Antiphospholipid Antibodies in Patients with COVID-19[J]. N Engl J Med, 2020, 382: e38. doi: 10.1056/NEJMc2007575 |
[50]
|
Xiao M, Zhang Y, Zhang S, et al. Antiphospholipid Antibodies in Critically Ill Patients With COVID-19[J]. Arthritis Rheumatol, 2020, 72: 1998-2004. doi: 10.1002/art.41425 |
[51]
|
Wang G, Wang Q, Wang Y, et al. Presence of Anti-MDA5 Antibody and Its Value for the Clinical Assessment in Patients With COVID-19: A Retrospective Cohort Study[J]. Front Immunol, 2021, 12: 791348. doi: 10.3389/fimmu.2021.791348 |
[52]
|
Philippot Q, Fekkar A, Gervais A, et al. Autoantibodies Neutralizing Type I IFNs in the Bronchoalveolar Lavage of at Least 10% of Patients During Life-Threatening COVID-19 Pneumonia[J]. J Clin Immunol, 2023, 43: 1093-1103. |
[53]
|
Solanich X, Rigo-Bonnin R, Gumucio VD, et al. Pre-existing Autoantibodies Neutralizing High Concentrations of Type I Interferons in Almost 10% of COVID-19 Patients Admitted to Intensive Care in Barcelona[J]. J Clin Immunol, 2021, 41: 1733-1744. |
[54]
|
Barrett CE, Koyama AK, Alvarez P, et al. Risk for Newly Diagnosed Diabetes >30 Days After SARS-CoV-2 Infection Among Persons Aged < 18 Years- United States, March 1, 2020-June 28, 2021[J]. MMWR Morb Mortal Wkly Rep, 2022, 71: 59-65. |
[55]
|
McKeigue PM, McGurnaghan S, Blackbourn L, et al. Relation of Incident Type 1 Diabetes to Recent COVID-19 Infection: Cohort Study Using e-Health Record Linkage in Scotland[J]. Diabetes Care, 2023, 46: 921-928. |
[56]
|
Daly JL, Simonetti B, Klein K, et al. Neuropilin-1 is a host factor for SARS-CoV-2 infection[J]. Science, 2020, 370: 861-865. |
[57]
|
Cantuti-Castelvetri L, Ojha R, Pedro LD, et al. Neuropilin-1 facilitates SARS-CoV-2 cell entry and infectivity[J]. Science, 2020, 370: 856-860. |
[58]
|
Wu CT, Lidsky PV, Xiao Y, et al. SARS-CoV-2 infects human pancreatic β cells and elicits β cell impairment[J]. Cell Metab, 2021, 33: 1565-1576. e5. |
[59]
|
Chen J, Wu C, Wang X, et al. The Impact of COVID-19 on Blood Glucose: A Systematic Review and Meta-Analysis[J]. Front Endocrinol (Lausanne), 2020, 11: 574541. |
[60]
|
Bonometti R, Sacchi MC, Stobbione P, et al. The first case of systemic lupus erythematosus (SLE) triggered by COVID-19 infection[J]. Eur Rev Med Pharmacol Sci, 2020, 24: 9695-9697. |
[61]
|
Valencia Sanchez C, Theel E, Binnicker M, et al. Autoimmune Encephalitis After SARS-CoV-2 Infection: Case Frequency, Findings, and Outcomes[J]. Neurology, 2021, 97: e2262-e2268. |
[62]
|
Capes A, Bailly S, Hantson P, et al. COVID-19 infection associated with autoimmune hemolytic anemia[J]. Ann Hematol, 2020, 99: 1679-1680. |
[63]
|
Bourgonje AR, Andreu-Sánchez S, Vogl T, et al. Phage-display immunoprecipitation sequencing of the antibody epitope repertoire in inflammatory bowel disease reveals distinct antibody signatures[J]. Immunity, 2023, 56: 1393-1409. e6. |
[64]
|
Enose-Akahata Y, Wang L, Almsned F, et al. The repertoire of CSF antiviral antibodies in patients with neuroinflammatory diseases[J]. Sci Adv, 2023, 9: eabq6978. |