LI Jinpeng, GUO Jie, LIU Tao, WEI Xiaotao, SONG Yuan, WANG Weiwei, HE Zhijun. Research Progress on the Main Mechanism Affecting Flap Survival[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0253
Citation: LI Jinpeng, GUO Jie, LIU Tao, WEI Xiaotao, SONG Yuan, WANG Weiwei, HE Zhijun. Research Progress on the Main Mechanism Affecting Flap Survival[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0253

Research Progress on the Main Mechanism Affecting Flap Survival

More Information
  • Received Date: April 18, 2024
  • Accepted Date: June 13, 2024
  • Available Online: November 22, 2024
  • Flap surgery is a complex surgical procedure that has become one of the effective methods for the treatment of many diseases and traumas. Flap survival is closely related to a variety of factors including cellular autophagy, oxidative stress, inflammatory response, mesenchymal stem cell function, and vascular regeneration. Cellular autophagy maintains intracellular homeostasis and plays a key role in reducing oxidative stress and inflammation and promoting injury repair. Excessive oxidative stress and inflammatory responses pose a threat to flaps, affecting their survival and successful transplantation. Endothelial cells are involved in vascular regeneration through proliferation, migration, and production of angiogenic factors, whereas vascular endothelial growth factor directly promotes blood vessel formation and maintains endothelial cell function. MSCs play an important role in promoting flap survival and tissue repair through their unique biological properties and multiple mechanisms of action. The multiple roles played by cellular autophagy, oxidative stress, inflammatory response, MSC function, and vascular regeneration in influencing postoperative flap survival are hereby elaborated. The aim is to provide a basis for the clinical application of regulating the above factors to improve postoperative flap survival, and to improve the success rate of flap surgery, reduce complications, and bring more hope for the recovery and quality of life of patients.
  • [1]
    Lee J H, You H J, Lee T Y, et al. Current Status of Experimental Animal Skin Flap Models: Ischemic Preconditioning and Molecular Factors[J]. Int J Mol Sci, 2022,23(9): 5234.
    [2]
    Qiao Z, Wang X, Deng Y, et al. Clinical Application of Pre-Expanded Perforator Flaps[J]. Facial Plast Surg Aesthet Med, 2023,25(1): 68-73.
    [3]
    Afrooghe A, Damavandi A R, Ahmadi E, et al. The current state of knowledge on how to improve skin flap survival: A review[J]. J Plast Reconstr Aesthet Surg, 2023,82: 48-57.
    [4]
    Sorg H, Sorg C G G, Tilkorn D J, et al. Free Flaps for Skin and Soft Tissue Reconstruction in the Elderly Patient: Indication or Contraindication[J]. Med Sci (Basel), 2023,11(1): 12.
    [5]
    Tong X F, Xiao Z Y, Li P T, et al. Angiogenesis and flap-related research: A bibliometric analysis[J]. Int Wound J, 2023,20(8): 3057-3072.
    [6]
    Wang Y, Li X, Lv H, et al. Therapeutic potential of naringin in improving the survival rate of skin flap: A review[J]. Front Pharmacol, 2023,14: 1128147.
    [7]
    Ye H, Li F, Shen Y, et al. Rosuvastatin promotes survival of random skin flaps through AMPK-mTOR pathway-induced autophagy[J]. Int Immunopharmacol, 2023,118: 110059.
    [8]
    Kuroki T, Takekoshi S, Kitatani K, et al. Protective Effect of Ebselen on Ischemia-reperfusion Injury in Epigastric Skin Flaps in Rats[J]. Acta Histochem Cytochem, 2022,55(5): 149-157.
    [9]
    Singh B, Kosuru R, Lakshmikanthan S, et al. Endothelial Rap1(Ras-Association Proximate 1) Restricts Inflammatory Signaling to Protect From the Progression of Atherosclerosis[J]. Arterioscler Thromb Vasc Biol, 2021,41(2): 638-650.
    [10]
    罗高兴, 邓君. 原位监测并调控局部活性氧水平促进创面修复[J]. 中华烧伤与创面修复杂志, 2022,38(10): 899-904.
    [11]
    Mills K H G. IL-17 and IL-17-producing cells in protection versus pathology[J]. Nat Rev Immunol, 2023,23(1): 38-54.
    [12]
    Korbecki J, Bobiński R, Dutka M. Self-regulation of the inflammatory response by peroxisome proliferator-activated receptors[J]. Inflamm Res, 2019,68(6): 443-458.
    [13]
    Fan X, Yang G, Kowitz J, et al. Takotsubo Syndrome: Translational Implications and Pathomechanisms[J]. Int J Mol Sci, 2022,23(4): 1951.
    [14]
    Odake K, Tsujii M, Iino T, et al. Febuxostat treatment attenuates oxidative stress and inflammation due to ischemia-reperfusion injury through the necrotic pathway in skin flap of animal model[J]. Free Radic Biol Med, 2021,177: 238-246.
    [15]
    Wang Y, Wang Y, Wang X, et al. Effect of leukocyte-platelet fibrin-rich wound reconstruction followed byfull-thickness skin grafting in the treatment of diabetic foot Wagner grade 4 ulcer gangrene (toe area)[J]. Platelets, 2023,34(1): 2131752.
    [16]
    Rajput S, Kuruoglu D, Salinas C A, et al. Flap management of groin wounds following vascular procedures: A review of 270 flaps for vascular salvage[J]. J Plast Reconstr Aesthet Surg, 2023,78: 38-47.
    [17]
    Zhou T, Wang X, Wang K, et al. Activation of aldehyde dehydrogenase-2 improves ischemic random skin flap survival in rats[J]. Front Immunol, 2023,14: 1127610.
    [18]
    Wang Y, Che M, Xin J, et al. The role of IL-1β and TNF-α in intervertebral disc degeneration[J]. Biomed Pharmacother, 2020,131: 110660.
    [19]
    Esteves G R, Junior I E, Masson I F B, et al. Photobiomodulation effect in tumoral necrosis factor-alpha(TNF-α) on the viability of random skin flap in rats[J]. Lasers Med Sci, 2022,37(3): 1495-1501.
    [20]
    王飞, 田阳, 徐骁然, 等. 黄芪甲苷通过调控TLR-4/NF-κB信号通路对大鼠皮瓣缺血再灌注损伤的影响[J]. 中国皮肤性病学杂志, 2021,35(5): 497-503.
    [21]
    He J B, Fang M J, Ma X Y, et al. Angiogenic and anti-inflammatory properties of azadirachtin A improve random skin flap survival in rats[J]. Exp Biol Med (Maywood), 2020,245(18): 1672-1682.
    [22]
    Jiang Z, Wang K, Lin Y, et al. Nesfatin-1 regulates the HMGB1-TLR4-NF-κB signaling pathway to inhibit inflammation and its effects on the random skin flap survival in rats[J]. Int Immunopharmacol, 2023,124(Pt A): 110849.
    [23]
    卫会明, 郑蕾, 魏世杰, 等. 皮瓣修复术后早期感染血浆NLRP3炎症小体-IL-1β信号通路的表达[J]. 中华医院感染学杂志, 2022,32(13): 1996-2000.
    [24]
    Huang G, Lin Y, Fang M, et al. Protective effects of icariin on dorsal random skin flap survival: An experimental study[J]. Eur J Pharmacol, 2019,861: 172600.
    [25]
    Matsushima K, Yang D, Oppenheim J J. Interleukin-8: An evolving chemokine[J]. Cytokine, 2022,153: 155828.
    [26]
    Wang Q, Zhang X, Sun W, et al. Clinical study on vacuum assisted closure combined with multiple flaps in the treatment of severe hand trauma[J]. Pak J Med Sci, 2022,38(1): 248-253.
    [27]
    Plebani M. Why C-reactive protein is one of the most requested tests in clinical laboratories?[J]. Clin Chem Lab Med, 2023,61(9): 1540-1545.
    [28]
    Schmidt F, Ward M, Repanos C. Postoperative serum C-reactive protein dynamics after pharyngolaryngectomy with jejunal free-flap reconstruction[J]. Ann R Coll Surg Engl, 2023,105(3): 263-268.
    [29]
    Guo L, Chen Y, Feng X, et al. Oxidative stress-induced endothelial cells-derived exosomes accelerate skin flap survival through Lnc NEAT1-mediated promotion of endothelial progenitor cell function[J]. Stem Cell Res Ther, 2022,13(1): 325.
    [30]
    Lin J, Jia C, Wang Y, et al. Therapeutic potential of pravastatin for random skin flaps necrosis: involvement of promoting angiogenesis and inhibiting apoptosis and oxidative stress[J]. Drug Des Devel Ther, 2019,13: 1461-1472.
    [31]
    Jomova K, Raptova R, Alomar S Y, et al. Reactive oxygen species, toxicity, oxidative stress, and antioxidants: chronic diseases and aging[J]. Arch Toxicol, 2023,97(10): 2499-2574.
    [32]
    Zhang D, Jin C, Han T, et al. Sinomenine promotes flap survival by upregulating eNOS and eNOS-mediated autophagy via PI3K/AKT pathway[J]. Int Immunopharmacol, 2023,116: 109752.
    [33]
    Jaganjac M, Milkovic L, Zarkovic N, et al. Oxidative stress and regeneration[J]. Free Radic Biol Med, 2022,181: 154-165.
    [34]
    Meng M, Huo R, Wang Y, et al. Lentinan inhibits oxidative stress and alleviates LPS-induced inflammation and apoptosis of BMECs by activating the Nrf2 signaling pathway[J]. Int J Biol Macromol, 2022,222(Pt B): 2375-2391.
    [35]
    Shi X, Zhou H, Wei J, et al. The signaling pathways and therapeutic potential of itaconate to alleviate inflammation and oxidative stress in inflammatory diseases[J]. Redox Biol, 2022,58: 102553.
    [36]
    Meng Z, Wang K, Lan Q, et al. Saxagliptin promotes random skin flap survival[J]. Int Immunopharmacol, 2023,120: 110364.
    [37]
    Zhang T, Huang Q, Gan K, et al. Effects of limonin treatment on the survival of random skin flaps in mice[J]. Front Surg, 2022,9: 1043239.
    [38]
    Mayo J S, Kurata W E, O'connor K M, et al. Oxidative Stress Alters Angiogenic and Antimicrobial Content of Extracellular Vesicles and Improves Flap Survival[J]. Plast Reconstr Surg Glob Open, 2019,7(12): e2588.
    [39]
    Liu S, Yao S, Yang H, et al. Autophagy: Regulator of cell death[J]. Cell Death Dis, 2023,14(10): 648.
    [40]
    Li B, Chen Z, Luo X, et al. Butylphthalide Inhibits Autophagy and Promotes Multiterritory Perforator Flap Survival[J]. Front Pharmacol, 2020,11: 612932.
    [41]
    Lou J, Zhang H, Qi J, et al. Cyclic helix B peptide promotes random-pattern skin flap survival via TFE3-mediated enhancement of autophagy and reduction of ROS levels[J]. Br J Pharmacol, 2022,179(2): 301-321.
    [42]
    马岁录, 何志军, 刘涛, 等. 中药单体调控“细胞自噬”防治皮瓣坏死[J]. 中国组织工程研究, 2024,28(1): 153-158.
    [43]
    Luo G, Zhou Z, Huang C, et al. Itaconic acid induces angiogenesis and suppresses apoptosis via Nrf2/autophagy to prolong the survival of multi-territory perforator flaps[J]. Heliyon, 2023,9(7): e17909.
    [44]
    Jiang J, Dong C, Zhai L, et al. Paeoniflorin Suppresses TBHP-Induced Oxidative Stress and Apoptosis inHuman Umbilical Vein Endothelial Cells via the Nrf2/HO-1 Signaling Pathway and Improves Skin Flap Survival[J]. Front Pharmacol, 2021,12: 735530.
    [45]
    Zhao Y, Shi Y, Lin H. Hypoxia Promotes Adipose-Derived Stem Cells to Protect Human Dermal Microvascular Endothelial Cells Against Hypoxia/Reoxygenation Injury[J]. J Surg Res, 2021,266: 230-235.
    [46]
    Lan Q, Wang K, Meng Z, et al. Roxadustat promotes hypoxia-inducible factor-1α/vascular endothelial growth factor signalling to enhance random skin flap survival in rats[J]. Int Wound J, 2023,20(9): 3586-3598.
    [47]
    Karimipour M, Farjah G H, Hassanzadeh M, et al. Post-treatment with metformin improves random skin flap survival through promoting angiogenesis in rats[J]. Vet Res Forum, 2022,13(2): 233-239.
    [48]
    He S, Walimbe T, Chen H, et al. Bioactive extracellular matrix scaffolds engineered with proangiogenic proteoglycan mimetics and loaded with endothelial progenitor cells promote neovascularization and diabetic wound healing[J]. Bioact Mater, 2022,10: 460-473.
    [49]
    Zaripova l N, Midgley A, Christmas S E, et al. Mesenchymal Stem Cells in the Pathogenesis and Therapy of Autoimmune and Autoinflammatory Diseases[J]. Int J Mol Sci, 2023,24(22): 16040.
    [50]
    何波, 何志军, 刘涛, 等. 间充质干细胞治疗皮瓣缺血再灌注损伤的作用机制及优势[J]. 中国组织工程研究, 2024,28(25): 4065-4071.
    [51]
    Chehelcheraghi F, Chien S, Bayat M. Mesenchymal stem cells improve survival in ischemic diabetic random skin flap via increased angiogenesis and VEGF expression[J]. J Cell Biochem, 2019,120(10): 17491-17499.
    [52]
    Lin X, Kong B, Zhu Y, et al. Bioactive Fish Scale Scaffolds with MSCs-Loading for Skin Flap Regeneration[J]. Adv Sci (Weinh), 2022,9(21): e2201226.
    [53]
    Niu Q, Yang Y, Li D, et al. Exosomes Derived from Bone Marrow Mesenchymal Stem Cells Alleviate Ischemia-Reperfusion Injury and Promote Survival of Skin Flaps in Rats[J]. Life (Basel), 2022,12(10): 1567.
    [54]
    Deng C, Dong K, Liu Y, et al. Hypoxic mesenchymal stem cell-derived exosomes promote the survival of skin flaps after ischaemia-reperfusion injury via mTOR/ULK1/FUNDC1 pathways[J]. J Nanobiotechnology, 2023,21(1): 340.
    [55]
    De Souza i C, Takejima A L, Simeoni R B, et al. Acellular Biomaterials Associated with Autologous Bone Marrow-Derived Mononuclear Stem Cells Improve Wound Healing through Paracrine Effects[J]. Biomedicines, 2023,11(4): 1003.
    [56]
    Nakagawa T, Sasaki M, Kataoka-sasaki Y, et al. Intravenous Infusion of Mesenchymal Stem Cells Promotes the Survival of Random Pattern Flaps in Rats[J]. Plast Reconstr Surg, 2021,148(4): 799-807.
  • Related Articles

    [1]GONG Jin, ZHANG Jinjin, CHEN Lili, WANG Hui, XING Yanchao. Research Progress on Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Knee Osteoarthritis[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 75-82. DOI: 10.12290/xhyxzz.2024-1049
    [2]WANG Hui, ZHANG Jinjin, CHEN Lili, XING Yanchao. In Vitro Production of Red Blood Cells: Progress and Challenge[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 166-171. DOI: 10.12290/xhyxzz.2023-0299
    [3]SHEN Jing, LIU Zhikai, GUAN Hui, ZHEN Hongnan, SUN Xiansong, JIANG Fei, ZHANG Yue, YU Lang, ZHANG Jie, ZHANG Fuquan. Total Marrow and Lymphoid Irradiation: A New Technology Assisting in Myeloablating Before Hematopoietic Stem Cell Transplantation[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 895-899. DOI: 10.12290/xhyxzz.2022-0503
    [4]WANG Jie, LI Xiangmin. Protective Effect of Mesenchymal Stem Cells on Cerebral Ischemic Reperfusion Injury[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 472-477. DOI: 10.12290/xhyxzz.2022-0734
    [5]WANG Hanbi, DOU Shuaijie, LIU Simiao, ZHANG Wanyu, LIU Meizhi, DENG Chengyan. Changes of MicroRNA Expression and Apoptosis in Endometrial Glandular Epithelial Cells under Hypoxic[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 626-631. DOI: 10.12290/xhyxzz.2022-0095
    [6]LI Zhujun, WANG Chenyu, LONG Xiao. Application of Mesenchymal Stem Cells in Plastic and Cosmetic Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 370-376. DOI: 10.12290/xhyxzz.2022-0036
    [7]XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231
    [8]Zi-yue LIU, Yi-cheng ZHU. Effect of Antihypertensive Program on the Prevention and Treatment of Cerebral Small Vessel Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(2): 108-111. DOI: 10.3969/j.issn.1674-9081.2019.02.004
    [9]Yun-shu OUYANG, Yi-xiu ZHANG, Hua MENG, Yu-xin JIANG, Qing DAI, Xi-ning WU, Da-chun ZHAO, Xin-yan LIU. Three-vessel and Tracheal View in the Diagnosis of Fetal Aortic Arch Anomalies[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(3): 185-189. DOI: 10.3969/j.issn.1674-9081.2016.03.005
    [10]Xin-jie BAO, Jun-ji WEI, Ming FENG, Shan LU, Chun-hua ZHAO, Ren-zhi WANG. Effect of Transplantation of Bone Marrow-derived Mesenchymal Stem Cells on the Apoptosis of Neurons in Ischemic Rats[J]. Medical Journal of Peking Union Medical College Hospital, 2011, 2(1): 19-23. DOI: 10.3969/j.issn.1674-9081.2011.01.004

Catalog

    Article Metrics

    Article views (69) PDF downloads (9) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close