Citation: | LI Zhujun, WANG Chenyu, LONG Xiao. Application of Mesenchymal Stem Cells in Plastic and Cosmetic Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 370-376. DOI: 10.12290/xhyxzz.2022-0036 |
[1] |
Kulus M, Sibiak R, Stefańska K, et al. Mesenchymal Stem/Stromal Cells Derived from Human and Animal Perinatal Tissues-Origins, Characteristics, Signaling Pathways, and Clinical Trials[J]. Cells, 2021, 10: 3278. DOI: 10.3390/cells10123278
|
[2] |
Bora P, Majumdar AS. Adipose tissue-derived stromal vascular fraction in regenerative medicine: a brief review on biology and translation[J]. Stem Cell Res Ther, 2017, 8: 145. DOI: 10.1186/s13287-017-0598-y
|
[3] |
Bagno LL, Salerno AG, Balkan W, et al. Mechanism of Action of Mesenchymal Stem Cells (MSCs): impact of delivery method[J]. Expert Opin Biol Ther, 2021: 1-15.
|
[4] |
Liu YJ, Zhang TY, Tan PC, et al. Superiority of Adipose-derived CD34+Cells over Adipose-derived Stem Cells in Promoting Ischemic Tissue Survival[J]. Stem Cell Rev Rep, 2022, 18: 660-671. DOI: 10.1007/s12015-021-10276-x
|
[5] |
Prockop DJ, Oh JY, Lee RH. Data against a Common Assumption: Xenogeneic Mouse Models Can Be Used to Assay Suppression of Immunity by Human MSCs[J]. Mol Ther, 2017, 25: 1748-1756. DOI: 10.1016/j.ymthe.2017.06.004
|
[6] |
Li ZJ, Wang LQ, Li YZ, et al. Application of adipose-derived stem cells in treating fibrosis[J]. World J Stem Cells, 2021, 13: 1747-1761. DOI: 10.4252/wjsc.v13.i11.1747
|
[7] |
Zhang S, Dong Z, Peng Z, et al. Anti-aging effect of adipose-derived stem cells in a mouse model of skin aging induced by D-galactose[J]. PLoS One, 2014, 9: e97573. DOI: 10.1371/journal.pone.0097573
|
[8] |
Pang SHM, D'rozario J, Mendonca S, et al. Mesenchymal stromal cell apoptosis is required for their therapeutic function[J]. Nat Commun, 2021, 12: 6495. DOI: 10.1038/s41467-021-26834-3
|
[9] |
de Witte SFH, Luk F, Sierra Parraga JM, et al. Immunomodulation By Therapeutic Mesenchymal Stromal Cells (MSC) Is Triggered Through Phagocytosis of MSC By Monocytic Cells[J]. Stem Cells, 2018, 36: 602-615. DOI: 10.1002/stem.2779
|
[10] |
Qian L, Pi L, Fang BR, et al. Adipose mesenchymal stem cell-derived exosomes accelerate skin wound healing via the lncRNA H19/miR-19b/SOX9 axis[J]. Lab Invest, 2021, 101: 1254-1266. DOI: 10.1038/s41374-021-00611-8
|
[11] |
Han B, Zhang Y, Xiao Y, et al. Adipose-Derived Stem Cell-Derived Extracellular Vesicles Inhibit the Fibrosis of Fibrotic Buccal Mucosal Fibroblasts via the MicroRNA-375/FOXF1 Axis[J]. Stem Cells Int, 2021, 2021: 9964159.
|
[12] |
Li Y, Zhang J, Shi J, et al. Exosomes derived from human adipose mesenchymal stem cells attenuate hypertrophic scar fibrosis by miR-192-5p/IL-17RA/Smad axis[J]. Stem Cell Res Ther, 2021, 12: 221. DOI: 10.1186/s13287-021-02290-0
|
[13] |
Guo S, Wang T, Zhang S, et al. Adipose-derived stem cell-conditioned medium protects fibroblasts at different senescent degrees from UVB irradiation damages[J]. Mol Cell Biochem, 2020, 463: 67-78. DOI: 10.1007/s11010-019-03630-8
|
[14] |
Liang JX, Liao X, Li SH, et al. Antiaging Properties of Exosomes from Adipose-Derived Mesenchymal Stem Cells in Photoaged Rat Skin[J]. Biomed Res Int, 2020, 2020: 6406395.
|
[15] |
Li L, Ngo HTT, Hwang E, et al. Conditioned Medium from Human Adipose-Derived Mesenchymal Stem Cell Culture Prevents UVB-Induced Skin Aging in Human Keratinocytes and Dermal Fibroblasts[J]. Int J Mol Sci, 2019, 21: 49. DOI: 10.3390/ijms21010049
|
[16] |
Charles-De-Sá L, Gontijo-De-Amorim NF, Rigotti G, et al. Photoaged Skin Therapy with Adipose-Derived Stem Cells[J]. Plast Reconstr Surg, 2020, 145: 1037e-1049e. DOI: 10.1097/PRS.0000000000006867
|
[17] |
Rasko YM, Beale E, Rohrich RJ. Secondary rhytidectomy: comprehensive review and current concepts[J]. Plast Reconstr Surg, 2012, 130: 1370-1378. DOI: 10.1097/PRS.0b013e31826d9eea
|
[18] |
Pathak A, Mohan R, Rohrich RJ. Chemical Peels: Role of Chemical Peels in Facial Rejuvenation Today[J]. Plast Reconstr Surg, 2020, 145: 58e-66e. DOI: 10.1097/PRS.0000000000006346
|
[19] |
Janes LE, Connor LM, Moradi A, et al. Current Use of Cosmetic Toxins to Improve Facial Aesthetics[J]. Plast Reconstr Surg, 2021, 147: 644e-657e. DOI: 10.1097/PRS.0000000000007762
|
[20] |
Sanniec K, Afrooz PN, Burns AJ. Long-Term Assessment of Perioral Rhytide Correction with Erbium: YAG Laser Resurfacing[J]. Plast Reconstr Surg, 2019, 143: 64-74. DOI: 10.1097/PRS.0000000000005163
|
[21] |
Mckee D, Remington K, Swift A, et al. Effective Rejuvenation with Hyaluronic Acid Fillers: Current Advanced Concepts[J]. Plast Reconstr Surg, 2019, 143: 1277e-1289e. DOI: 10.1097/PRS.0000000000005607
|
[22] |
Azoury SC, Shakir S, Bucky LP, et al. Modern Fat Grafting Techniques to the Face and Neck[J]. Plast Reconstr Surg, 2021, 148: 620e-633e. DOI: 10.1097/PRS.0000000000008405
|
[23] |
Ring CM, Finney R, Avram M. Lasers, lights, and compounds for hair loss in aesthetics[J]. Clin Dermatol, 2022, 40: 64-75. DOI: 10.1016/j.clindermatol.2021.08.013
|
[24] |
Guo Y, Hu Z, Chen J, et al. Feasibility of adipose-derived therapies for hair regeneration: insights based on signaling interplay and clinical overview[J]. J Am Acad Dermatol, 2021. doi: 10.1016/j.jaad.2021.11.058.
|
[25] |
Rivera-Gonzalez GC, Shook BA, Andrae J, et al. Skin Adipocyte Stem Cell Self-Renewal Is Regulated by a PDGFA/AKT-Signaling Axis[J]. Cell Stem Cell, 2016, 19: 738-751. DOI: 10.1016/j.stem.2016.09.002
|
[26] |
Yano K, Brown LF, Detmar M. Control of hair growth and follicle size by VEGF-mediated angiogenesis[J]. J Clin Invest, 2001, 107: 409-417. DOI: 10.1172/JCI11317
|
[27] |
Lee YJ, Park SH, Park HR, et al. Mesenchymal Stem Cells Antagonize IFN-Induced Proinflammatory Changes and Growth Inhibition Effects via Wnt/β-Catenin and JAK/STAT Pathway in Human Outer Root Sheath Cells and Hair Follicles[J]. Int J Mol Sci, 2021, 22: 4581. DOI: 10.3390/ijms22094581
|
[28] |
Ahn H, Lee SY, Jung WJ, et al. Alopecia treatment using minimally manipulated human umbilical cord-derived mesenchymal stem cells: Three case reports and review of literature[J]. World J Clin Cases, 2021, 9: 3741-3751. DOI: 10.12998/wjcc.v9.i15.3741
|
[29] |
Czarnecka A, Odziomek A, Murzyn M, et al. Wharton's jelly-derived mesenchymal stem cells in the treatment of four patients with alopecia areata[J]. Adv Clin Exp Med, 2021, 30: 211-218. DOI: 10.17219/acem/132069
|
[30] |
Lee YI, Kim J, Kim J, et al. The Effect of Conditioned Media From Human Adipocyte-Derived Mesenchymal Stem Cells on Androgenetic Alopecia After Nonablative Fractional Laser Treatment[J]. Dermatol Surg, 2020, 46: 1698-1704. DOI: 10.1097/DSS.0000000000002518
|
[31] |
Kim SJ, Kim MJ, Lee YJ, et al. Innovative method of alopecia treatment by autologous adipose-derived SVF[J]. Stem Cell Res Ther, 2021, 12: 486. DOI: 10.1186/s13287-021-02557-6
|
[32] |
Kuhlmann C, Blum JC, Schenck TL, et al. Evaluation of the Usability of a Low-Cost 3D Printer in a Tissue Engineer-ing Approach for External Ear Reconstruction[J]. Int J Mol Sci, 2021, 22: 11667. DOI: 10.3390/ijms222111667
|
[33] |
Torres-Guzman RA, Huayllani MT, Avila FR, et al. Application of Human Adipose-Derived Stem cells for Bone Regeneration of the Skull in Humans[J]. J Craniofac Surg, 2022, 33: 360-363. DOI: 10.1097/SCS.0000000000008114
|
[34] |
Yang Y, Kulkarni A, Soraru GD, et al. 3D Printed SiOC(N) Ceramic Scaffolds for Bone Tissue Regeneration: Improved Osteogenic Differentiation of Human Bone Marrow-Derived Mesenchymal Stem Cells[J]. Int J Mol Sci, 2021, 22: 13676. DOI: 10.3390/ijms222413676
|
[35] |
Dai T, Jiang Z, Cui C, et al. The Roles of Podoplanin-Positive/Podoplanin-Negative Cells from Adipose-Derived Stem Cells in Lymphatic Regeneration[J]. Plast Reconstr Surg, 2020, 145: 420-431. DOI: 10.1097/PRS.0000000000006474
|
[36] |
Li ZJ, Yang E, Li YZ, et al. Application and prospect of adipose stem cell transplantation in treating lymphedema[J]. World J Stem Cells, 2020, 12: 676-687. DOI: 10.4252/wjsc.v12.i7.676
|
[37] |
Wang JW, Zhu YZ, Hu X, et al. Extracellular vesicles derived from adipose-derived stem cells accelerate diabetic wound healing by suppressing the expression of matrix metalloproteinase-9[J]. Curr Pharm Biotechnol, 2022, 23: 894-901. DOI: 10.2174/1389201022666210719154009
|
[38] |
Zhou J, Wei T, He Z. ADSCs enhance VEGFR3-mediated lymphangiogenesis via METTL3-mediated VEGF-C m(6)A modification to improve wound healing of diabetic foot ulcers[J]. Mol Med, 2021, 27: 146.
|
[39] |
Ma J, Zhang Z, Wang Y, et al. Investigation of miR-126-3p loaded on adipose stem cell-derived exosomes for wound healing of full-thickness skin defects[J]. Exp Dermatol, 2022, 31: 362-374. DOI: 10.1111/exd.14480
|
[40] |
Pi L, Yang L, Fang BR, et al. Exosomal microRNA-125a-3p from human adipose-derived mesenchymal stem cells promotes angiogenesis of wound healing through inhibiting PTEN[J]. Mol Cell Biochem, 2022, 477: 115-127. DOI: 10.1007/s11010-021-04251-w
|
[41] |
Tanios E, Ahmed TM, Shafik EA, et al. Efficacy of adipose-derived stromal vascular fraction cells in the mana-gement of chronic ulcers: a randomized clinical trial[J]. Regen Med, 2021, 16: 975-988. DOI: 10.2217/rme-2020-0207
|
[42] |
Wu Y, Liang T, Hu Y, et al. 3D bioprinting of integral ADSCs-NO hydrogel scaffolds to promote severe burn wound healing[J]. Regen Biomater, 2021, 8: rbab014. DOI: 10.1093/rb/rbab014
|
[43] |
Camargo CP, Kubrusly MS, Morais-Besteiro J, et al. The influence of adipocyte-derived stem cells (ASCs) on the ischemic epigastric flap survival in diabetic rats[J]. Acta Cir Bras, 2021, 36: e360907. DOI: 10.1590/acb360907
|
[44] |
Zhang C, Wang T, Zhang L, et al. Combination of lyophilized adipose-derived stem cell concentrated conditioned medium and polysaccharide hydrogel in the inhibition of hypertrophic scarring[J]. Stem Cell Res Ther, 2021, 12: 23. DOI: 10.1186/s13287-020-02061-3
|
[45] |
Arjunan S, Gan SU, Choolani M, et al. Inhibition of growth of Asian keloid cells with human umbilical cord Wharton's jelly stem cell-conditioned medium[J]. Stem Cell Res Ther, 2020, 11: 78. DOI: 10.1186/s13287-020-01609-7
|
[46] |
Ejaz A, Epperly MW, Hou W, et al. Adipose-Derived Stem Cell Therapy Ameliorates Ionizing Irradiation Fibrosis via Hepatocyte Growth Factor-Mediated Transforming Growth Factor-β Downregulation and Recruitment of Bone Marrow Cells[J]. Stem Cells, 2019, 37: 791-802. DOI: 10.1002/stem.3000
|
[47] |
Kodumudi V, Bibb LA, Adalsteinsson JA, et al. Emerging Therapeutics in the Management of Connective Tissue Disease. Part Ⅱ. Dermatomyositis and Scleroderma[J]. J Am Acad Dermatol, 2022. doi: 10.1016/j.jaad.2021.12.068.
|
[48] |
Granel B, Daumas A, Jouve E, et al. Safety, tolerability and potential efficacy of injection of autologous adipose-derived stromal vascular fraction in the fingers of patients with systemic sclerosis: an open-label phase I trial[J]. Ann Rheum Dis, 2015, 74: 2175-2182. DOI: 10.1136/annrheumdis-2014-205681
|
[49] |
Almadori A, Griffin M, Ryan CM, et al. Stem cell enriched lipotransfer reverses the effects of fibrosis in systemic sclerosis[J]. PLoS One, 2019, 14: e0218068.
|
[50] |
Wang C, Long X, Si L, et al. A pilot study on ex vivo expanded autologous adipose-derived stem cells of improving fat retention in localized scleroderma patients[J]. Stem Cells Transl Med, 2021, 10: 1148-1156. DOI: 10.1002/sctm.20-0419
|
[51] |
Al-Shaibani MBH. Three-dimensional cell culture (3DCC) improves secretion of signaling molecules of mesenchymal stem cells (MSCs)[J]. Biotechnol Lett, 2022, 44: 143-155. DOI: 10.1007/s10529-021-03216-9
|
[52] |
Jurj A, Pasca S, Braicu C, et al. Focus on organoids: cooperation and interconnection with extracellular vesicles-is this the future of in vitro modeling?[J]. Semin Cancer Biol, 2021. doi: 10.1016/j.semcancer.2021.12.002.
|
[53] |
Ren J, Kong W, Lu F, et al. Adipose-derived stem cells (ADSCs) inhibit the expression of anti-apoptosis proteins through up-regulation of ATF4 on breast cancer cells[J]. Ann Transl Med, 2021, 9: 1300. DOI: 10.21037/atm-21-3746
|
[54] |
Storti G, Scioli MG, Kim BS, et al. Mesenchymal Stem Cells in Adipose Tissue and Extracellular Vesicles in Ovarian Cancer Patients: A Bridge toward Metastatic Diffusion or a New Therapeutic Opportunity?[J]. Cells, 2021, 10: 2117. DOI: 10.3390/cells10082117
|
[55] |
Di Franco S, Bianca P, Sardina DS, et al. Adipose stem cell niche reprograms the colorectal cancer stem cell metastatic machinery[J]. Nat Commun, 2021, 12: 5006. DOI: 10.1038/s41467-021-25333-9
|
[56] |
Hamilton G, Teufelsbauer M. Adipose-derived stromal/stem cells and extracellular vesicles for cancer therapy[J]. Expert Opin Biol Ther, 2022, 22: 67-78. DOI: 10.1080/14712598.2021.1954156
|
[57] |
Chiu TL, Baskaran R, Tsai ST, et al. Intracerebral transplantation of autologous adipose-derived stem cells for chronic ischemic stroke: A phase I study[J]. J Tissue Eng Regen Med, 2022, 16: 3-13. DOI: 10.1002/term.3256
|
[58] |
Chen CF, Hu CC, Wu CT, et al. Treatment of knee osteoarthritis with intra-articular injection of allogeneic adipose-derived stem cells (ADSCs) ELIXCYTEⓇ: a phase Ⅰ/Ⅱ, randomized, active-control, single-blind, multiple-center clinical trial[J]. Stem Cell Res Ther, 2021, 12: 562. DOI: 10.1186/s13287-021-02631-z
|
[59] |
Garcia-Olmo D, Gilaberte I, Binek M, et al. Follow-up Study to Evaluate the Long-term Safety and Efficacy of Darvadstrocel (Mesenchymal Stem Cell Treatment) in Patients with Perianal Fistulizing Crohn's Disease: ADMIRE-CD Phase 3 Randomized Controlled Trial[J]. Dis Colon Rectum, 2022, 65: 713-720. DOI: 10.1097/DCR.0000000000002325
|
[60] |
Panés J, García-Olmo D, Van Assche G, et al. Expanded allogeneic adipose-derived mesenchymal stem cells (Cx601) for complex perianal fistulas in Crohn's disease: a phase 3 randomised, double-blind controlled trial[J]. Lancet, 2016, 388: 1281-1290. DOI: 10.1016/S0140-6736(16)31203-X
|
[61] |
Cho YJ, Kwon H, Kwon YJ, et al. Efficacy and safety of autologous adipose tissue-derived stem cell therapy for children with refractory Crohn's complex fistula: a Phase IV clinical study[J]. Ann Surg Treat Res, 2021, 101: 58-64. DOI: 10.4174/astr.2021.101.1.58
|
[62] |
Cheng RJ, Xiong AJ, Li YH, et al. Mesenchymal Stem Cells: Allogeneic MSC May Be Immunosuppressive but Autologous MSC Are Dysfunctional in Lupus Patients[J]. Front Cell Dev Biol, 2019, 7: 285. DOI: 10.3389/fcell.2019.00285
|
[63] |
Chu CF, Mao SH, Shyu VB, et al. Allogeneic Bone-Marrow Mesenchymal Stem Cell with Moldable Cryogel for Craniofacial Bone Regeneration[J]. J Pers Med, 2021, 11: 1326. DOI: 10.3390/jpm11121326
|
[1] | GONG Jin, ZHANG Jinjin, CHEN Lili, WANG Hui, XING Yanchao. Research Progress on Human Umbilical Cord Mesenchymal Stem Cells in the Treatment of Knee Osteoarthritis[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 75-82. DOI: 10.12290/xhyxzz.2024-1049 |
[2] | ZHANG Siyu, MA Shiqi, WANG Mengci, LI Xiaoyi, FENG Shumei. Research Progress of Skin Tissue Engineering Scaffolds and Their Materials in Wound Repair[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 603-610. DOI: 10.12290/xhyxzz.2022-0648 |
[3] | YAN Jia, SHEN Le, JIANG Hong, HUANG Yuguang. A Survey of the Current Status of Anesthesiology for Plastic and Cosmetic Surgery in China[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 440-448. DOI: 10.12290/xhyxzz.2022-0107 |
[4] | LI Mohan, SUN Fengrun, WANG Tao, HE Yumiao, MA Chao, HUANG Yuguang. Transdermal Technology of Local Anesthetics in Plastic and Cosmetic Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 358-362. DOI: 10.12290/xhyxzz.2022-0044 |
[5] | JIANG Hong, HUANG Yuguang. Current Situation and the Future of Anesthesia for Plastic and Cosmetic Surgery in China[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 353-357. DOI: 10.12290/xhyxzz.2022-0105 |
[6] | CHEN Bo, YANG Hui-xiang. The Role of Visceral Adipose Tissue in the Pathogenesis, Diagnosis, and Treatment of Crohn's Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 73-79. DOI: 10.3969/j.issn.1674-9081.2020.00.007 |
[7] | Xiao-li XU, Xin SUI, Lan SONG, Yao HUANG, Xiao WANG, Zheng-yu JIN, Wei SONG. Imaging Manifestations of Respiratory Diseases Associated with Connective Tissue Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 79-84. DOI: 10.3969/j.issn.1674-9081.20180189 |
[8] | Liang WANG, Ke LÜ, Li-meng CHEN, Peng XIA, Yu-xin JIANG, Qing DAI. Application of Virtual Touch Tissue Quantification Technique in IgA Nephropathy[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(1): 50-53. DOI: 10.3969/j.issn.1674-9081.2014.01.012 |
[9] | Liang WANG, Ke LÜ, Li-meng CHEN, Peng XIA, Yu-xin JIANG, Qing DAI. Factors Affecting the Application of Virtual Touch Tissue Quantification Technique in Chronic Kidney Disease: a Spleen-kidney Comparative Study[J]. Medical Journal of Peking Union Medical College Hospital, 2013, 4(3): 294-298. DOI: 10.3969/j.issn.1674-9081.2013.03.015 |
[10] | Xiao-yan CHANG, Jie CHEN, Ying JIANG, Da-chun ZHAO, Qing LING, Yu-feng LUO, Rui-e FENG. Mucosa-associated Lymphoid Tissue Lymphoma of the Thymus: A Stuty of 2 Cases[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 41-46. DOI: 10.3969/j.issn.1674-9081.2012.01.010 |
1. |
刘新新,周恩友,安智远,蔡春霞,张露洁,李建增,李转见,闫峰宾,康相涛,高延玲,韩瑞丽. 不同来源外泌体对骨骼发育及骨骼疾病的影响. 畜牧兽医学报. 2024(02): 419-426 .
![]() |