Citation: | ZHANG Siyu, MA Shiqi, WANG Mengci, LI Xiaoyi, FENG Shumei. Research Progress of Skin Tissue Engineering Scaffolds and Their Materials in Wound Repair[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 603-610. DOI: 10.12290/xhyxzz.2022-0648 |
[1] |
Turner NJ, Badylak SF. The use of biologic scaffolds in the treatment of chronic nonhealing wounds[J]. Adv Wound Care, 2015, 4: 490-500. DOI: 10.1089/wound.2014.0604
|
[2] |
Rezvani Ghomi E, Nourbakhsh N, Akbari Kenari M, et al. Collagen-based biomaterials for biomedical applications[J]. J Biomed Mater Res B Appl Biomater, 2021, 109: 1986-1999. DOI: 10.1002/jbm.b.34881
|
[3] |
Troy E, Tilbury MA, Power AM, et al. Nature-based biomaterials and their application in biomedicine[J]. Polymers (Basel), 2021, 13: 3321. DOI: 10.3390/polym13193321
|
[4] |
Park CH, Woo KM. Fibrin-based biomaterial applications in tissue engineering and regenerative medicine[J]. Adv Exp Med Biol, 2018, 1064: 253-261. http://www.ncbi.nlm.nih.gov/pubmed/30471038
|
[5] |
Wani SUD, Gautam SP, Qadrie ZL, et al. Silk fibroin as a natural polymeric based bio-material for tissue engineering and drug delivery systems-A review[J]. Int J Biol Macromol, 2020, 163: 2145-2161. DOI: 10.1016/j.ijbiomac.2020.09.057
|
[6] |
Gholipourmalekabadi M, Sapru S, Samadikuchaksaraei A, et al. Silk fibroin for skin injury repair: Where do things stand?[J]. Adv Drug Deliv Rev, 2020, 153: 28-53. DOI: 10.1016/j.addr.2019.09.003
|
[7] |
Zheng X, Chen Y, Dan N, et al. Highly stable collagen scaffolds crosslinked with an epoxidized natural polysac-charide for wound healing[J]. Int J Biol Macromol, 2021, 182: 1994-2002. DOI: 10.1016/j.ijbiomac.2021.05.189
|
[8] |
Chandika P, Oh GW, Heo SY, et al. Electrospun porous bilayer nano-fibrous fish collagen/PCL bio-composite scaffolds with covalently cross-linked chitooligosaccharides for full-thickness wound-healing applications[J]. Mater Sci Eng C Mater Biol Appl, 2021, 121: 111871. DOI: 10.1016/j.msec.2021.111871
|
[9] |
Tripathi S, Singh BN, Singh D, et al. Optimization and evaluation of ciprofloxacin-loaded collagen/chitosan scaffolds for skin tissue engineering[J]. 3 Biotech, 2021, 11: 160. DOI: 10.1007/s13205-020-02567-w
|
[10] |
Abolgheit S, Abdelkader S, Aboushelib M, et al. Bone marrow-derived mesenchymal stem cells and extracellular vesicles enriched collagen chitosan scaffold in skin wound healing (a rat model)[J]. J Biomater Appl, 2021, 36: 128-139. DOI: 10.1177/0885328220963920
|
[11] |
Troy E, Tilbury M, Power A, et al. Nature-based biomaterials and their application in biomedicine[J]. Polymers (Basel), 2021, 13: 3321. DOI: 10.3390/polym13193321
|
[12] |
Phull AR, Eo SH, Abbas Q, et al. Applications of Chondrocyte-Based Cartilage Engineering: An Overview[J]. Biomed Res Int, 2016, 2016: 1879837. http://www.onacademic.com/detail/journal_1000040476241210_6933.html
|
[13] |
Su K, Wang C. Recent advances in the use of gelatin in biomedical research[J]. Biotechnol Lett, 2015, 37: 2139-2145. DOI: 10.1007/s10529-015-1907-0
|
[14] |
Fang Q, Yao Z, Feng L, et al. Antibiotic-loaded chitosan-gelatin scaffolds for infected seawater immersion wound healing[J]. Int J Biol Macromol, 2020, 159: 1140-1155. DOI: 10.1016/j.ijbiomac.2020.05.126
|
[15] |
Koyuncu A, Koç S, Akdere ÖE, et al. Investigation of the synergistic effect of platelet-rich plasma and polychromatic light on human dermal fibroblasts seeded chitosan/gelatin scaffolds for wound healing[J]. J Photochem Photobiol B, 2022, 232: 112476. DOI: 10.1016/j.jphotobiol.2022.112476
|
[16] |
Al Kayal T, Losi P, Pierozzi S, et al. A new method for fibrin-based electrospun/sprayed scaffold fabrication[J]. Sci Rep, 2020, 10: 5111. DOI: 10.1038/s41598-020-61933-z
|
[17] |
Modery-Pawlowski CL, Tian LL, Pan V, et al. Approaches to synthetic platelet analogs[J]. Biomaterials, 2013, 34: 526-541. DOI: 10.1016/j.biomaterials.2012.09.074
|
[18] |
Wong CC, Huang YM, Chen CH, et al. Cytokine and growth factor delivery from implanted platelet-rich fibrin enhances rabbit achilles tendon healing[J]. Int J Mol Sci, 2020, 21: 3221. DOI: 10.3390/ijms21093221
|
[19] |
Suter N, Joshi A, Wunsch T, et al. Self-assembled fibrinogen nanofibers support fibroblast adhesion and prevent E. coli infiltration[J]. Mater Sci Eng C Mater Biol Appl, 2021, 126: 112156. DOI: 10.1016/j.msec.2021.112156
|
[20] |
Sun W, Gregory DA, Tomeh MA, et al. Silk fibroin as a functional biomaterial for tissue engineering[J]. Int J Mol Sci, 2021, 22: 1499. DOI: 10.3390/ijms22031499
|
[21] |
Fang G, Sapru S, Behera S, et al. Exploration of the tight structural-mechanical relationship in mulberry and non-mulberry silkworm silks[J]. J Mater Chem B, 2016, 4: 4337-4347. DOI: 10.1039/C6TB01049K
|
[22] |
Wu M, Huang S, Ye X, et al. Human epidermal growth factor-functionalized cocoon silk with improved cell proliferation activity for the fabrication of wound dressings[J]. J Biomater Appl, 2021, 36: 722-730. DOI: 10.1177/0885328221997981
|
[23] |
Nguyen TP, Nguyen QV, Nguyen VH, et al. Silk fibroin-based biomaterials for biomedical applications: A review[J]. Polymers (Basel), 2019, 11: 1933. DOI: 10.3390/polym11121933
|
[24] |
Cui B, Zhang C, Gan B, et al. Collagen-tussah silk fibroin hybrid scaffolds loaded with bone mesenchymal stem cells promote skin wound repair in rats[J]. Mater Sci Eng C Mater Biol Appl, 2020, 109: 110611. DOI: 10.1016/j.msec.2019.110611
|
[25] |
Mogoᶊanu GD, Grumezescu AM. Natural and synthetic polymers for wounds and burns dressing[J]. Int J Pharm, 2014, 463: 127-136. DOI: 10.1016/j.ijpharm.2013.12.015
|
[26] |
Yang MY, Liu BS, Huang HY, et al. Engineered pullulan-collagen-gold nano composite improves mesenchymal stem cells neural differentiation and inflammatory regulation[J]. Cells, 2021, 10: 3276. DOI: 10.3390/cells10123276
|
[27] |
Dalgic AD, Koman E, Karatas A, et al. Natural origin bilayer pullulan-PHBV scaffold for wound healing applications[J]. Biomater Adv, 2022, 134: 112554. DOI: 10.1016/j.msec.2021.112554
|
[28] |
Barbon S, Stocco E, Grandi F, et al. Biofabrication of a novel leukocyte-fibrin-platelet membrane as a cells and growth factors delivery platform for tissue engineering applications[J]. J Tissue Eng Regen Med, 2018, 12: 1891-1906. DOI: 10.1002/term.2713
|
[29] |
Sharip NS, Ariffin H. Cellulose nanofibrils for biomaterial applications[J]. Mater Today Proc, 2019, 16: 1959-1968. DOI: 10.1016/j.matpr.2019.06.074
|
[30] |
Hickey RJ, Pelling AE. Cellulose biomaterials for tissue engineering[J]. Front Bioeng Biotechnol, 2019, 7: 45. DOI: 10.3389/fbioe.2019.00045
|
[31] |
Bar-Shai N, Sharabani-Yosef O, Zollmann M, et al. Seaweed cellulose scaffolds derived from green macroalgae for tissue engineering[J]. Sci Rep, 2021, 11: 11843. DOI: 10.1038/s41598-021-90903-2
|
[32] |
Subhedar A, Bhadauria S, Ahankari S, et al. Nanocellulose in biomedical and biosensing applications: A review[J]. Int J Biol Macromol, 2021, 166: 587-600. DOI: 10.1016/j.ijbiomac.2020.10.217
|
[33] |
Fu L, Zhou P, Zhang S, et al. Evaluation of bacterial nanocellulose-based uniform wound dressing for large area skin transplantation[J]. Mater Sci Eng C Mater Biol Appl, 2013, 33: 2995-3000. DOI: 10.1016/j.msec.2013.03.026
|
[34] |
Yang G, Xie J, Hong F, et al. Antimicrobial activity of silver nanoparticle impregnated bacterial cellulose membr-ane: Effect of fermentation carbon sources of bacterial cellulose[J]. Carbohydr Polym, 2012, 87: 839-845. DOI: 10.1016/j.carbpol.2011.08.079
|
[35] |
Younes I, Rinaudo M. Chitin and chitosan preparation from marine sources. Structure, properties and applications[J]. Mar Drugs, 2015, 13: 1133-1174. DOI: 10.3390/md13031133
|
[36] |
Rezaei FS, Sharifianjazi F, Esmaeilkhanian A, et al. Chitosan films and scaffolds for regenerative medicine applications: A review[J]. Carbohydr Polym, 2021, 273: 118631. DOI: 10.1016/j.carbpol.2021.118631
|
[37] |
Zhao H, Liao J, Wu F, et al. Mechanical strength improvement of chitosan/hydroxyapatite scaffolds by coating and cross-linking[J]. J Mech Behav Biomed Mater, 2021, 114: 104169. DOI: 10.1016/j.jmbbm.2020.104169
|
[38] |
Hu Z, Zhang D, Lu S, et al. Chitosan-based composite materials for prospective hemostatic applications[J]. Mar Drugs, 2018, 16: 273. DOI: 10.3390/md16080273
|
[39] |
Jiang Z, Zhang K, Du L, et al. Construction of chitosan scaffolds with controllable microchannel for tissue engineer-ing and regenerative medicine[J]. Mater Sci Eng C Mater Biol Appl, 2021, 126: 112178. DOI: 10.1016/j.msec.2021.112178
|
[40] |
Salesa B, Llorens-Gámez M, Serrano-Aroca Á. Study of 1D and 2D carbon nanomaterial in alginate films[J]. Nanomaterials (Basel), 2020, 10: 206. DOI: 10.3390/nano10020206
|
[41] |
Piras CC, Smith DK. Multicomponent polysaccharide alginate-based bioinks[J]. J Mater Chem B, 2020, 8: 8171-8188. DOI: 10.1039/D0TB01005G
|
[42] |
Ghosal K, Manakhov A, Zajíčková L, et al. Structural and surface compatibility study of modified electrospun poly(ε-caprolactone) (PCL) composites for skin tissue engineering[J]. AAPS Pharm Sci Tech, 2017, 18: 72-81. DOI: 10.1208/s12249-016-0500-8
|
[43] |
Hajikhani M, Emam-Djomeh Z, Askari G. Fabrication and characterization of mucoadhesive bioplastic patch via coaxial polylactic acid (PLA) based electrospun nanofibers with antimicrobial and wound healing application[J]. Int J Biol Macromol, 2021, 172: 143-153. DOI: 10.1016/j.ijbiomac.2021.01.051
|
[44] |
Cheng CC, Yang XJ, Fan WL, et al. Cytosine-Functiona-lized Supramolecular Polymer-Mediated Cellular Behavior and Wound Healing[J]. Biomacromolecules, 2020, 21: 3857-3866. DOI: 10.1021/acs.biomac.0c00938
|
[45] |
Farah S, Anderson DG, Langer R. Physical and mechanical properties of PLA, and their functions in widespread applications — A comprehensive review[J]. Adv Drug Deliv Rev, 2016, 107: 367-392. DOI: 10.1016/j.addr.2016.06.012
|
[46] |
Sadeghi-Avalshahr AR, Nokhasteh S, Molavi A, et al. Tailored PCL scaffolds as skin substitutes using sacrificial PVP fibers and collagen/chitosan blends[J]. Int J Mol Sci, 2020, 21: 2311. DOI: 10.3390/ijms21072311
|
[47] |
Liu C, Wang Z, Wei X, et al. 3D printed hydrogel/PCL core/shell fiber scaffolds with NIR-triggered drug release for cancer therapy and wound healing[J]. Acta Biomater, 2021, 131: 314-325. DOI: 10.1016/j.actbio.2021.07.011
|
[48] |
Lu H, Oh HH, Kawazoe N, et al. PLLA-collagen and PLLA-gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering[J]. Sci Technol Adv Mater, 2012, 13: 064210. DOI: 10.1088/1468-6996/13/6/064210
|
[49] |
Panayi AC, Haug V, Liu Q, et al. Novel application of autologous micrografts in a collagen-glycosaminoglycan scaffold for diabetic wound healing[J]. Biomed Mater, 2021, 16: 035032. DOI: 10.1088/1748-605X/abc3dc
|
[50] |
Vasita R, Katti DS. Nanofibers and their applications in tissue engineering[J]. Int J Nanomed, 2006, 1: 15-30. DOI: 10.2147/nano.2006.1.1.15
|
[51] |
Zahedi E, Esmaeili A, Eslahi N, et al. Fabrication and Characterization of Core-Shell Electrospun Fibrous Mats Containing Medicinal Herbs for Wound Healing and Skin Tissue Engineering[J]. Mar Drugs, 2019, 17: 27. DOI: 10.3390/md17010027
|
[52] |
Elliott WH, Bonani W, Maniglio D, et al. Silk hydrogels of tunable structure and viscoelastic properties using different chronological orders of genipin and physical cross-linking[J]. ACS Appl Mater Interfaces, 2015, 7: 12099-12108. DOI: 10.1021/acsami.5b02308
|
[53] |
Shafei S, Khanmohammadi M, Heidari R, et al. Exosome loaded alginate hydrogel promotes tissue regeneration in full-thickness skin wounds: An in vivo study[J]. J Biomed Mater Res A, 2020, 108: 545-556. DOI: 10.1002/jbm.a.36835
|
[54] |
Muñoz-González PU, Lona-Ramos MC, Gutiérrez-Verdín LD, et al. Gel dressing based on type Ⅰ collagen modified with oligourethane and silica for skin wound healing[J]. Biomed Mater, 2022, 17: 045005. DOI: 10.1088/1748-605X/ac6b70
|
[55] |
Lee S, Choi E, Cha MJ, et al. Cell adhesion and long-term survival of transplanted mesenchymal stem cells: a prerequisite for cell therapy[J]. Oxid Med Cell Longev, 2015, 2015: 632902. DOI: 10.1155/2015/632902
|
[56] |
Zhang Z, Li Z, Li Y, et al. Sodium alginate/collagen hydrogel loaded with human umbilical cord mesenchymal stem cells promotes wound healing and skin remodeling[J]. Cell Tissue Res, 2021, 383: 809-821. DOI: 10.1007/s00441-020-03321-7
|
[57] |
Solarte David VA, Güiza-Argüello VR, Arango-Rodríguez ML, et al. Decellularized Tissues for Wound Healing: Towards Closing the Gap Between Scaffold Design and Effective Extracellular Matrix Remodeling[J]. Front Bioeng Biotechnol, 2022, 10: 821852. DOI: 10.3389/fbioe.2022.821852
|
[58] |
Ahmed Omar N, Amédée J, Letourneur D, et al. Recent advances of pullulan and/or dextran-based materials for bone tissue engineering strategies in preclinical studies: A systematic review[J]. Front Bioeng Biotechnol, 2022, 10: 889481. DOI: 10.3389/fbioe.2022.889481
|
[59] |
Nyame TT, Chiang HA, Leavitt T, et al. Tissue-engineered skin substitutes[J]. Plast Reconstr Surg, 2015, 136: 1379-1388. DOI: 10.1097/PRS.0000000000001748
|
[60] |
Wang F, Wang M, She Z, et al. Collagen/chitosan based two-compartment and bi-functional dermal scaffolds for skin regeneration[J]. Mater Sci Eng C Mater Biol Appl, 2015, 52: 155-162. DOI: 10.1016/j.msec.2015.03.013
|
[61] |
Lastra ML, Gómez Ribelles JL, Cortizo AM. Design and characterization of microspheres for a 3D mesenchymal stem cell culture[J]. Colloids Surf B Biointerfaces, 2020, 196: 111322. DOI: 10.1016/j.colsurfb.2020.111322
|
[62] |
Huang S, Lu G, Wu Y, et al. Mesenchymal stem cells delivered in a microsphere-based engineered skin contribute to cutaneous wound healing and sweat gland repair[J]. J Dermatol Sci, 2012, 66: 29-36. DOI: 10.1016/j.jdermsci.2012.02.002
|
[1] | YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216 |
[2] | LIU Yuan, ZHAO Lin. Update and Interpretation of 2022 National Comprehensive Cancer Network Clinical Practice Guidelines for Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 999-1004. DOI: 10.12290/xhyxzz.2022-0271 |
[3] | ZHANG Shan, LIU Zhaorui, LIU Jie. Relationship Between SerpinB9 and Tumors and Research Progress of SerpinB9 in Skin Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 852-857. DOI: 10.12290/xhyxzz.2021-0805 |
[4] | XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231 |
[5] | Beyond the NICU: Comprehensive Care of the High-risk Infant(2015)[J]. Medical Journal of Peking Union Medical College Hospital, 2016, 7(6): 449-449. |
[7] | Ming-sheng MA, Xü-de ZHANG, Min WEI, Shi-min ZHAO, Zheng-qing QIU. Efficacy of Low Dose Corticosteroid Therapy in Duchenne Muscular Dystrophy[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 384-388. DOI: 10.3969/j.issn.1674-9081.2014.04.006 |
[8] | Jie LIU, Yue-ping ZENG, Chun-xia HE, Qin LONG, Hong-zhong JIN, Qiu-ning SUN. Corticosteroids plus Intravenous Immunoglobulin in the Treatment of 7 Cases with Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(4): 381-385. DOI: 10.3969/j.issn.1674-9081.2012.04.004 |
[9] | Shuai TANG, Jie YI, Yu-guang HUANG. Cardiovascular Responses of Intubation with Shikani Seeing Optical Stylet and Macintosh Laryngoscope[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(3): 314-317. DOI: 10.3969/j.issn.1674-9081.2012.03.015 |
[10] | Hang SHEN, Li-ying CUI, Lin CHEN, Hai-tao REN, Yan-huan ZHAO, Yu XIAO. Expression of Titin Epitope in Normal Thymus, Thymoma and Thymus Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(3): 287-292. DOI: 10.3969/j.issn.1674-9081.2012.03.009 |
1. |
宋杏丽. 创面修复的研究进展与启示. 中国现代医药杂志. 2024(08): 1-4 .
![]() |