Citation: | XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231 |
[1] |
Bohmdorfer G, Sethuraman S, Rowley MJ, et al. Long non-coding RNA produced by RNA polymerase V determines boundaries of heterochromatin[J]. Elife, 2016, 5: e19092. DOI: 10.7554/eLife.19092
|
[2] |
Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs[J]. Trends Genet, 2014, 30: 348-355. DOI: 10.1016/j.tig.2014.06.001
|
[3] |
Chen LL. Linking long noncoding RNA localization and function[J]. Trends Biochem Sci, 2016, 41: 761-772. DOI: 10.1016/j.tibs.2016.07.003
|
[4] |
Cao J. The functional role of long non-coding RNAs and epigenetics[J]. Biol Proced Online, 2014, 16: 11. DOI: 10.1186/1480-9222-16-11
|
[5] |
Bugide S, Gonugunta VK, Penugurti V, et al. HPIP promotes epithelialmesenchymal transition and cisplatin resist-ance in ovarian cancer cells through PI3K/AKT pathway activation[J]. Cell Oncol, 2017, 40: 133-144. DOI: 10.1007/s13402-016-0308-2
|
[6] |
Lapidot T, Sirard C, Vormoor J, et al. A cell initiating human acute myeloid leukaemia after transplantation into SCID mice[J]. Nature, 1994, 367: 645-648. DOI: 10.1038/367645a0
|
[7] |
Al-Hajj M, Wicha MS, Benito-Hernandez A, et al. Prospective identification of tumorigenic breast cancer cells[J]. Proc Natl Acad Sci USA, 2003, 100: 3983-3988. DOI: 10.1073/pnas.0530291100
|
[8] |
Kreso A, Dick JE. Evolution of the cancer stem cell model[J]. Cell Stem Cell, 2014, 14: 275-291. DOI: 10.1016/j.stem.2014.02.006
|
[9] |
Lee SY, Jeong EK, Ju MK, et al. Induction of metastasis, cancer stem cell phenotype, and oncogenic metabolism in cancer cells by ionizing radiation[J]. Mol Cancer, 2017, 16: 10. DOI: 10.1186/s12943-016-0577-4
|
[10] |
Perry RB, Ulitsky I. The functions of long noncoding RNAs in development and stem cells[J]. Development, 2016, 143: 3882-3894. DOI: 10.1242/dev.140962
|
[11] |
Miao F, Chen J, Shi M, et al. LncRNA HAND2-AS1 inhibits non-small cell lung cancer migration, invasion and maintains cell stemness through the interactions with TGF-β1[J]. Biosci Rep, 2019, 39. pii: BSR20181525.
|
[12] |
Li XT, Li JC, Feng M, et al. Novel lncRNA-ZNF281 regulates cell growth, stemness and invasion of glioma stem-like U251s cells[J]. Neoplasma, 2018, 66: 118-127. http://www.ncbi.nlm.nih.gov/pubmed/30509101
|
[13] |
Li Z, Liu H, Zhong Q, et al. LncRNA UCA1 is necessary for TGF-beta-induced epithelial-mesenchymal transition and stemness via acting as a ceRNA for Slug in glioma cells[J]. FEBS Open Bio, 2018, 8: 1855-1865. DOI: 10.1002/2211-5463.12533
|
[14] |
Wang Y, Zhu P, Luo J, et al. LncRNA HAND2-AS1 promotes liver cancer stem cell self-renewal via BMP signaling[J]. EMBO J, 2019, 38: e101110. http://www.ncbi.nlm.nih.gov/pubmed/31334575
|
[15] |
Zhang Q, Matsuura K, Kleiner DE, et al. Analysis of long noncoding RNA expression in hepatocellular carcinoma of different viral etiology[J]. J Transl Med, 2016, 14: 328. DOI: 10.1186/s12967-016-1085-4
|
[16] |
Parasramka MA, Patel T. Long non-coding RNA regulation of liver cancer stem cell self-renewal offers new therapeutic targeting opportunities[J]. Stem Cell Investig, 2016, 3: 1. http://www.ncbi.nlm.nih.gov/pubmed/27358893
|
[17] |
Wang F, Yuan JH, Wang SB, et al. Oncofetal long noncoding RNA PVT1 promotes proliferation and stem cell-like property of hepatocellular carcinoma cells by stabilizing NOP2[J]. Hepatology, 2014, 60: 1278-1290. DOI: 10.1002/hep.27239
|
[18] |
Li H, Zhu L, Xu L, et al. Long noncoding RNA linc00617 exhibits oncogenic activity in breast cancer[J]. Mol Carcinog, 2017, 56: 3-17. DOI: 10.1002/mc.22338
|
[19] |
Yao J, Li J, Geng P, et al. Knockdown of a HIF-2 alpha promoter upstream long noncoding RNA impairs colorectal cancer stem cell properties in vitro through HIF-2 alpha downregulation[J]. Onco Targets Ther, 2015, 8: 3467-3474. http://www.ncbi.nlm.nih.gov/pmc/articles/PMC4664519/
|
[20] |
Li W, He X, Xue R, et al. Combined over-expression of the hypoxia-inducible factor 2 alpha gene and its long non-coding RNA predicts unfavorable prognosis of patients with osteosarcoma[J]. Pathol Res Pract, 2016, 212: 861-866. DOI: 10.1016/j.prp.2016.06.013
|
[21] |
Wang Y, Yao J, Meng H, et al. A novel long non-coding RNA, hypoxia-inducible factor-2 alpha promoter upstream transcript, functions as an inhibitor of osteosarcoma stem cells in vitro[J]. Mol Med Rep, 2015, 11: 2534-2540. DOI: 10.3892/mmr.2014.3024
|
[22] |
Saha SS, Roy Chowdhury R, Mondal NR, et al. Identification of genetic variation in the lncRNA HOTAIR associated with HPV16-related cervical cancer pathogenesis[J]. Cell Oncol, 2016, 39: 559-572. DOI: 10.1007/s13402-016-0298-0
|
[23] |
Wang X, Arai S, Song X, et al. Induced ncRNAs allosterically modify RNA-binding proteins in cis to inhibit transcription[J]. Nature, 2008, 454: 126-130. DOI: 10.1038/nature06992
|
[24] |
Jun Dou YN, He X, Di Wu ML, et al. Decreasing lncRNA HOTAIR expression inhibits human colorectal cancer stem cells[J]. Am J Transl Res, 2016, 8: 98-108. http://www.ncbi.nlm.nih.gov/pubmed/27069543
|
[25] |
Padua Alves C, Fonseca AS, Muys BR. et al. Brief report: The lincRNA Hotair is required for epithelial-to mesenchymal transition and stemness maintenance of cancer cell lines[J]. Stem Cells, 2013, 31: 2827-2832. DOI: 10.1002/stem.1547
|
[26] |
Deng J, Yang M, Jiang R, et al. Long noncoding RNA HOTAIR regulates the proliferation, self-renewal capacity, tumor formation and migration of the cancer stem-like cell (CSC) subpopulation enriched from breast cancer cells[J]. PLoS One, 2017, 12: e0170860. DOI: 10.1371/journal.pone.0170860
|
[27] |
Haiyan Li JA, Wu M, Zheng Q, et al. LncRNA HOTAIR promotes human liver cancer stem cell malignant growth through downregulation of SETD2[J]. Oncotarget, 2015, 6: 27847-27864. DOI: 10.18632/oncotarget.4443
|
[28] |
Fang K, Liu P, Dong S, et al. Magnetofection based on superparamagnetic ironoxide nanoparticle-mediated low lncRNA HOTAIR expression decreases the proliferation and invasion of glioma stem cells[J]. Int J Oncol, 2016, 49: 509-518. DOI: 10.3892/ijo.2016.3571
|
[29] |
Min SN, Wei T, Wang XT, et al. Clinicopathological and prognostic significance of homeobox transcript antisense RNA expression in various cancers: A meta-analysis[J]. Medicine, 2017, 96: e7084. DOI: 10.1097/MD.0000000000007084
|
[30] |
Lu MY, Liao YW, Chen PY, et al. Targeting LncRNA HOTAIR suppresses cancer stemness and metastasis in oral carcinomas stem cells through modulation of EMT[J]. Oncotarget, 2017, 8: 98542-98552. DOI: 10.18632/oncotarget.21614
|
[31] |
Chen WY, Liu SY, Chang YS, et al. MicroRNA-34a regulates WNT/TCF7 signaling and inhibits bone metastasis in Ras activated prostate cancer[J]. Oncotarget, 2015, 6: 441-457. DOI: 10.18632/oncotarget.2690
|
[32] |
Sumithra USB, Das AB. Alternative splicing within the Wnt signaling pathway: Role in cancer development[J]. Cell Oncol, 2016, 39: 1-13. DOI: 10.1007/s13402-015-0266-0
|
[33] |
Wang L, Bu P, Ai Y, et al. A long non-coding RNA targets microRNA miR-34a to regulate colon cancer stem cell asymmetric division[J]. Elife, 2016, 5: e14620. DOI: 10.7554/eLife.14620
|
[34] |
Poirier F, Chan CT, Timmons PM, et al. The murine H19 gene is activated during embryonic stem cell differentiation in vitro and at the time of implantation in the developing embryo[J]. Development, 1991, 113: 1105-1114. DOI: 10.1242/dev.113.4.1105
|
[35] |
Peng F, Li TT, Wang KL, et al. H19/let-7/LIN28 reciprocal negative regulatory circuit promotes breast cancer stem cell maintenance[J]. Cell Death Dis, 2017, 8: e2569. http://pubmedcentralcanada.ca/pmcc/articles/PMC5386357/
|
[36] |
Bauderlique-Le Roy H, Vennin C, Brocqueville G, et al. Enrichment of human stem-like prostate cells with s-SHIP promoter activity uncovers a role in Stemness for the long noncoding RNA H19[J]. Stem Cells Dev, 2015, 24: 1252-1262. DOI: 10.1089/scd.2014.0386
|
[37] |
Jiang X, Yan Y, Hu M, et al. Increased level of H19 long noncoding RNA promotes invasion, angiogenesis, and stemness of glioblastoma cells[J]. J Neurosurg, 2016, 124: 129-136. DOI: 10.3171/2014.12.JNS1426
|
[38] |
Viswanathan SR, Daley GQ. Lin28: A microRNA regulator with a macro role[J]. Cell, 2010, 140: 445-449. DOI: 10.1016/j.cell.2010.02.007
|
[39] |
Liu N, Zhong L, Zeng J, et al. Upregulation of microRNA-200a associates with tumor proliferation, CSCs phenotype and chemosensitivity in ovarian cancer[J]. Neoplasma, 2015, 62: 550-559. DOI: 10.4149/neo_2015_066
|
[40] |
Liu C, Liu R, Zhang D, et al. MicroRNA-141 suppresses prostate cancer stem cells and metastasis by targeting a cohort of pro-metastasis genes[J]. Nat Commun, 2017, 8: 14270. DOI: 10.1038/ncomms14270
|
[41] |
Yang Q, Wang X, Tang C, et al. H19 promotes the migration and invasion of colon cancer by sponging miR-138 to upregulate the expression of HMGA1[J]. Int J Oncol, 2017, 50: 1801-1809. DOI: 10.3892/ijo.2017.3941
|
[42] |
Liang WC, Fu WM, Wong CW, et al. The lncRNA H19 promotes epithelial to mesenchymal transition by functioning as miRNA sponges in colorectal cancer[J]. Oncotarget, 2015, 6: 22513-22525. DOI: 10.18632/oncotarget.4154
|
[43] |
Li Z, Zhao X, Zhou Y, et al. The long non-coding RNA HOTTIP promotes progression and gemcitabine resistance by regulating HOXA13 in pancreatic cancer[J]. J Transl Med, 2015, 13: 84. DOI: 10.1186/s12967-015-0442-z
|
[44] |
Fu Z, Chen C, Zhou Q, et al. LncRNA HOTTIP modulates cancer stem cell properties in human pancreatic cancer by regulating HOXA9[J]. Cancer Lett, 2017, 410: 68-81. DOI: 10.1016/j.canlet.2017.09.019
|
[45] |
Quagliata L, Matter MS, Piscuoglio S, et al. Long noncoding RNA HOTTIP/HOXA13 expression is associated with disease progression and predicts outcome in hepatocellular carcinoma patients[J]. Hepatology, 2014, 59: 911-923. DOI: 10.1002/hep.26740
|
[46] |
Chen S, Nagel S, Schneider B, et al. A new ETV6-NTRK3 cell line model reveals MALAT1 as a novel therapeutic target - a short report[J]. Cell Oncol, 2018, 41: 93-101. DOI: 10.1007/s13402-017-0356-2
|
[47] |
Jiao F, Hu H, Han T, et al. Long noncoding RNA MALAT-1 enhances stem cell-like phenotypes in pancreatic cancer cells[J]. Int J Mol Sci, 2015, 16: 6677-6693. DOI: 10.3390/ijms16046677
|
[48] |
Zeng L, Cen Y, Chen J. Long non-coding RNA MALAT-1 contributes to maintenance of stem cell-like phenotypes in breast cancer cells[J]. Oncol Lett, 2017, 15: 2117-2122.
|
[49] |
Han Y, Zhou L, Wu T, et al. Downregulation of lncRNA-MALAT1 affects proliferation and the expression of Stemness markers in glioma stem cell line SHG139S[J]. Cell Mol Neurobiol, 2016, 36: 1097-1107. DOI: 10.1007/s10571-015-0303-6
|
[50] |
Wu M, Lin Z, Li X, et al. HULC cooperates with MALAT1 to aggravate liver cancer stem cells growth through telomere repeat-binding factor 2[J]. Sci Rep, 2016, 6: 36045. DOI: 10.1038/srep36045
|
[51] |
Jiao F, Hu H, Yuan C, et al. Elevated expression level of long noncoding RNA MALAT-1 facilitates cell growth, migration and invasion in pancreatic cancer[J]. Oncol Rep, 2014, 32: 2485-2492. DOI: 10.3892/or.2014.3518
|
[52] |
Xiao Y, Pan J, Geng Q, et al. LncRNA MALAT1 increases the stemness of gastric cancer cells via enhancing SOX2 mRNA stability[J]. FEBS Open Bio, 2019, 9: 1212-1222. DOI: 10.1002/2211-5463.12649
|
[53] |
Amodio N, Raimondi L, Juli G, et al. MALAT1: a druggable long non-coding RNA for targeted anti-cancer approaches[J]. J Hematol Oncol, 2018, 11: 63. DOI: 10.1186/s13045-018-0606-4
|
[54] |
Qu L, Ding J, Chen C, et al. Exosome-transmitted lncARSR promotes Sunitinib resistance in renal Cancer by acting as a competing endogenous RNA[J]. Cancer Cell, 2016, 29: 653-668. DOI: 10.1016/j.ccell.2016.03.004
|
[55] |
Qu L, Wu ZJ, Li YM, et al. A feedforward loop between lncARSR and YAP activity promotes expansion of renal tumour-initiating cells[J]. Nat Commun, 2016, 7: 12692. DOI: 10.1038/ncomms12692
|
[56] |
Yang C, Cai WC, Dong ZT, et al. lncARSR promotes liver cancer stem cells expansion via STAT3 pathway[J]. Gene, 2019, 687: 73-81. DOI: 10.1016/j.gene.2018.10.087
|
[57] |
Cheng Z, Lei Z, Yang P, et al. Long non-coding RNA THOR promotes liver cancer stem cells expansion via β-catenin pathway[J]. Gene, 2019, 684: 95-103. DOI: 10.1016/j.gene.2018.10.051
|
[58] |
Phi LTH, Sari IN, Yang YG, et al. Cancer stem cells (CSCs) in drug resistance and their therapeutic implications in Cancer treatment[J]. Stem Cells Int, 2018, 2018: 5416923. http://europepmc.org/abstract/MED/29681949
|
[59] |
Lee S, Seo HH, Lee CY, et al. Human long noncoding RNA regulation of stem cell potency and differentiation[J]. Stem Cells Int, 2017, 2017: 6374504. http://pubmedcentralcanada.ca/pmcc/articles/PMC5603141/
|
[60] |
Boman BM, Wicha MS, Fields JZ, et al. Symmetric division of cancer stem cells-a key mechanism in tumor growth that should be targeted in future therapeutic approaches[J]. Clin Pharmacol Ther, 2007, 81: 893-898. DOI: 10.1038/sj.clpt.6100202
|
[1] | YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216 |
[2] | WEN Qiang, WANG Renfei, HUANG Rui, ZHANG Yuelun, LIN Yansong, Chinese Society of Clinical Oncology Nuclear Medicine Expert Committee. Guidelines for the Diagnosis, Treatment, and Management of Iodine Refractory Differentiated Thyroid Cancer(2023 edition)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1197-1202. DOI: 10.12290/xhyxzz.2023-0342 |
[3] | LIU Yuan, ZHAO Lin. Update and Interpretation of 2022 National Comprehensive Cancer Network Clinical Practice Guidelines for Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 999-1004. DOI: 10.12290/xhyxzz.2022-0271 |
[4] | Xin WU, Bing-lu LI, Chao-ji ZHENG, Xiao-dong HE. Clinical Analysis of Pathologically Negative Reoperation for Differentiated Thyroid Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(4): 425-429. DOI: 10.3969/j.issn.1674-9081.2020.04.012 |
[5] | Chen-xi YU, Shui SUN. Roles of Long Noncoding RNAs in the Development and Progression of Osteoarthritis[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 85-90. DOI: 10.3969/j.issn.1674-9081.20170138 |
[6] | Jia-qi ZHANG, Lei LIU, Gui-ge WANG, Wen-liang BAI, Shan-qing LI. Clinical Pathological Features and Prognosis of Non-small Cell Lung Cancer with Skip N2 Lymph Node Metastasis[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 272-277. DOI: 10.3969/j.issn.1674-9081.2019.03.015 |
[8] | Yu XIA, Yu-xin JIANG, Qing DAI, Ke LÜ, Pin GAO. Contrast-enhanced Ultrasound of Hepatocellular Carcinoma: Enhancement Pattern Features for Evaluation of Tumor Differentiation[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(1): 46-49. DOI: 10.3969/j.issn.1674-9081.2014.01.011 |
[9] | Xiao-hua SHI, Zhi-yong LIANG, Huan-wen WU, Xin-yu REN, Tong-hua LIU. Effect of RNA Interference Plasmid on the Expression of Oncogene AKT2 in Pancreatic Cancer Cell Line Panc-1[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 102-108. DOI: 10.3969/j.issn.1674-9081.2012.01.021 |
[10] | Jian SUN, Wen-bo LI, Di YANG, Yin CHENG, Quan-cai CUI. Clinicopathological Characteristics of Poorly Differentiated Thyroid Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 72-76. DOI: 10.3969/j.issn.1674-9081.2012.01.016 |