Chen-xi YU, Shui SUN. Roles of Long Noncoding RNAs in the Development and Progression of Osteoarthritis[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 85-90. DOI: 10.3969/j.issn.1674-9081.20170138
Citation: Chen-xi YU, Shui SUN. Roles of Long Noncoding RNAs in the Development and Progression of Osteoarthritis[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(1): 85-90. DOI: 10.3969/j.issn.1674-9081.20170138

Roles of Long Noncoding RNAs in the Development and Progression of Osteoarthritis

More Information
  • Corresponding author:

    SUN Shui Tel: 86-531-68776351, E-mail: shunshui1965@foxmail.com

  • Received Date: July 16, 2017
  • Issue Publish Date: January 29, 2020
  • Osteoarthritis (OA), the most common chronic joint disease in the elderly population, is mainly characterized by the degeneration of articular cartilage and its pathogenesis is not fully understood yet. Long non-coding RNAs(lncRNAs)are of a new class of regulatory non-coding RNAs with a length longer than 200 nucleotides. They lack open reading frames and have no potential capacity forprotein translation. Increasing evidence indicates that LncRNAs can be differentially expressed in the normal articular cartilage and OA cartilage. Moreover, some lncRNAs have been shown to be involved in multiple pathological processes of OA, including extracellular matrix degradation, inflammatory responses, apoptosis, angiogenesis, autophagy, the response of chondrocytes to mechanic stress, etc. In this review article, we will focus on the function of lnc-RNAs in the development and progression of OA and the potential new targets that might be used for the diagnosis and treatment of OA.
  • [1]
    Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis[J]. Int J Mol Sci, 2015, 16:26035-26054. DOI: 10.3390/ijms161125943
    [2]
    Chen D, Shen J, Zhao W, et al. Osteoarthritis:toward a comprehensive understanding of pathological mechanism[J].Bone Res, 2017, 5:16044. DOI: 10.1038/boneres.2016.44
    [3]
    McAninch D, Roberts CT, Bianco-Miotto T. Mechanistic insight into long noncoding RNAs and the placenta[J]. Int J Mol Sci, 2017, 18:E1371. DOI: 10.3390/ijms18071371
    [4]
    Harries LW. Long non-coding RNAs and human disease[J]. Biochem Soc Trans, 2012, 40:902-906. DOI: 10.1042/BST20120020
    [5]
    Jiang SD, Lu J, Deng ZH, et al. Long noncoding RNAs in osteoarthritis[J]. Joint Bone Spine, 2016, 84:553-556.
    [6]
    Chen WK, Yu XH, Yang W, et al. lncRNAs:novel players in intervertebral disc degeneration and osteoarthritis[J]. Cell Prolif, 2017, 50. doi: 10.1111/cpr.12313.
    [7]
    Dykes IM, Emanueli C. Transcriptional and post-transcriptional gene regulation by long non-coding RNA[J]. Genomics Proteomics Bioinformatics, 2017, 15:177-186. DOI: 10.1016/j.gpb.2016.12.005
    [8]
    Liu Q, Zhang X, Dai L, et al. Long noncoding RNA related to cartilage injury promotes chondrocyte extracellular matrix degradation in osteoarthritis[J]. Arthritis Rheumatol, 2014, 66:969-978. https://www.ncbi.nlm.nih.gov/pubmed/24757148
    [9]
    Fu M, Huang G, Zhang Z, et al. Expression profile of long noncoding RNAs in cartilage from knee osteoarthritis patients[J]. Osteoarthritis Cartilage, 2015, 23:423-432. DOI: 10.1016/j.joca.2014.12.001
    [10]
    Xing D, Liang JQ, Li Y, et al. Identification of long noncoding RNA associated with osteoarthritis in humans[J]. Orthop Surg, 2014, 6:288-293. DOI: 10.1111/os.12147
    [11]
    Zhang C, Wang P, Jiang P, et al. Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis[J].Gene, 2016, 586:248-253. DOI: 10.1016/j.gene.2016.04.016
    [12]
    Huang Z, Li J, Du S, et al. Effect of UCP4 on the proliferation and apoptosis of chondrocyte:its possible involvement and regulation in osteoarthritis[J]. PLoS One, 2016, 11:e0150684. DOI: 10.1371/journal.pone.0150684
    [13]
    Hwang HS, Kim HA. Chondrocyte apoptosis in the pathogenesis of osteoarthritis[J]. Int J Mol Sci, 2015, 16:26035-26054. DOI: 10.3390/ijms161125943
    [14]
    Li Y, Li S, Luo Y, et al. LncRNA PVT1 regulates chondrocyte apoptosis in osteoarthritis by acting as a sponge for miR-488-3p[J].DNA Cell Biol, 2017, 36:571-580. DOI: 10.1089/dna.2017.3678
    [15]
    Zhang C, Wang P, Jiang P, et al. Upregulation of lncRNA HOTAIR contributes to IL-1β-induced MMP overexpression and chondrocytes apoptosis in temporomandibular joint osteoarthritis[J].Gene, 2016, 586:248-253. DOI: 10.1016/j.gene.2016.04.016
    [16]
    Song J, Ahn C, Chun CH, et al. A long non-coding RNA, GAS5, plays a critical role in the regulation of miR-21 during osteoarthritis[J]. J Orthop Res, 2014, 32:1628-1635. DOI: 10.1002/jor.22718
    [17]
    Zhang G, Wu Y, Xu D, et al. Long Noncoding RNA UFC1 Promotes Proliferation of Chondrocyte in Osteoarthritis by Acting as a Sponge for miR-34a[J]. DNA Cell Biol, 2016, 35:691-695. DOI: 10.1089/dna.2016.3397
    [18]
    Nair A, Kanda V, Bush-Joseph C, et al. Synovial fluid from patients with early osteoarthritis modulates fibroblast-like synoviocyte responses to toll-like receptor 4 and toll-like receptor 2 ligands via soluble CD14[J]. Arthritis Rheum, 2012, 64:2268-2277. DOI: 10.1002/art.34495
    [19]
    Kang Y, Song J, Kim D, et al. PCGEM1 stimulates proliferation of osteoarthritic synoviocytes by acting as a sponge for miR-770[J]. J Orthop Res, 2016, 34:412-418. DOI: 10.1002/jor.23046
    [20]
    Man GS, Mologhianu G. Osteoarthritis pathogenesis- a complex process that involves the entire joint[J].J Med Life, 2014, 7:37-41.
    [21]
    Wang KC, Yang YW, Liu B, et al.A long noncoding RNA maintains active chromatin to coordinate homeoticgene expression[J]. Nature, 2011, 472:120-124. DOI: 10.1038/nature09819
    [22]
    Kim D, Song J, Han J, et al. Two non-coding RNAs, MicroRNA-101 and HOTTIP contribute cartilage integrity by epigenetic and homeotic regulation of integrin-α1[J]. Cell Signal, 2013, 25:2878-2887. DOI: 10.1016/j.cellsig.2013.08.034
    [23]
    Dudek KA, Lafont JE, Martinez-Sanchez A, etal.Type Ⅱ collagen expression is regulated by tissue-specific miR-675 in human articular chondrocytes[J]. J Biol Chem, 2010, 285:24381-24387. DOI: 10.1074/jbc.M110.111328
    [24]
    Lo Dico A, Costa V, Martelli C, et al. MiR675-5p acts on HIF-1α to sustain hypoxic responses:a new therapeutic strategy for glioma[J].Theranostics, 2016, 6:1105-1118. DOI: 10.7150/thno.14700
    [25]
    Bouaziz W, Sigaux J, Modrowski D, et al. Interaction of HIF1α and β-catenin inhibits matrix metalloproteinase 13 expression and prevents cartilage damage in mice[J]. Proc Natl Acad Sci U S A, 2016, 113:5453-5458. DOI: 10.1073/pnas.1514854113
    [26]
    Steck E, Boeuf S, Gabler J, et al. Regulation of H19 and its encoded microRNA-675 in osteoarthritis and under anabolic and catabolic in vitro conditions[J]. J Mol Med(Berl), 2012, 90:1185-1195. DOI: 10.1007%2Fs00109-012-0895-y
    [27]
    Liu-Bryan R. Inflammation and intracellular metabolism:new targets in OA[J]. Osteoarthritis Cartilage, 2015, 23:1835-1842. DOI: 10.1016/j.joca.2014.12.016
    [28]
    Mathy NW, Chen XM.Long non-coding RNAs (lncRNAs) and their transcriptional control of inflammatory responses[J]. J Biol Chem, 2017, 292:12375-12382. DOI: 10.1074/jbc.R116.760884
    [29]
    Pearson MJ, Philp AM, Heward JA, et al. Long intergenic noncoding RNAs mediate the human chondrocyte inflammatory response and are differentially Eexpressed in osteoarthritis cartilage[J].Arthritis Rheumatol, 2016, 68:845-856. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4950001/
    [30]
    Zhou Y, Zhang X, Klibanski A. MEG3 noncoding RNA:a tumor suppressor[J]. J Mol Endocrinol, 2012, 48:R45-R53. DOI: 10.1530/JME-12-0008
    [31]
    Su W, Xie W, Shang Q, et al. The Long noncoding RNA MEG3 is downregulated and inverselyassociated with VEGF levels in osteoarthritis[J]. Biomed Res Int, 2015, 2015:356893. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4454735/
    [32]
    Zhu X, Yang S, Lin W, et al. Roles of cell cycle regulators cyclin D1, CDK4, and p53 in knee osteoarthritis[J]. Genet Test Mol Biomarkers, 2016, 20、:529-534. DOI: 10.1089/gtmb.2016.0020
    [33]
    Li YS, Zhang FJ, Zeng C, et al. Autophagy in osteoarthritis[J]. Joint Bone Spine, 2016, 83:143-148. DOI: 10.1016/j.jbspin.2015.06.009
    [34]
    Xu Z, Yan Y, Qian L, et al. Long non-coding RNAs act as regulators of cell autophagy in diseases (Review)[J]. Oncol Rep, 2017, 37:1359-1366. DOI: 10.3892/or.2017.5416
    [35]
    Guilak F. Biomechanical factors in osteoarthritis[J].Best Pract Res Clin Rheumatol, 2011, 25:815-823. DOI: 10.1016/j.berh.2011.11.013
    [36]
    Liu Q, Hu X, Zhang X, et al. The psendogene LncRNA function as a competing endogenous RNA to promote cartilage degradation in human osteoarthritis[J]. Mol Ther, 2016, 24:1726-1733. DOI: 10.1038/mt.2016.151
    [37]
    Dana H, Chalbatani GM, Mahmoodzadeh H, et al. Molecular mechanisms and biological functions of siRNA[J]. Int J Biomed Sci, 2017, 13:48-57.
    [38]
    Lam JK, Chow MY, Zhang Y, et al. siRNA versus miRNA as therapeutic for gene silencing[J]. Mol Ther Nucleic Acids, 2015, 4:e252. DOI: 10.1038/mtna.2015.23
    [39]
    Barata P, Sood AK, Hong DS. RNA-targeted therapeutics in cancer clinical trials:Current status and future direction[J].Cancer Treat Rev, 2016, 50:35-47. DOI: 10.1016/j.ctrv.2016.08.004
    [40]
    Pastori C, Kapranov P, Penas C, et al. The Bromodomain protein BRD4 controls HOTAIR, a long noncoding RNA essential forglioblastoma proliferation[J]. Proc Natl Acad Sci U S A, 2015, 112:8326-8331. DOI: 10.1073/pnas.1424220112
    [41]
    Zhou T, Kim Y, MacLeod AR.Targeting long noncoding RNA with antisense oligonucleotide technology as cancer therapeutics[J]. Methods Mol Biol, 2016, 1402:199-213.
  • Related Articles

    [1]JIA Chunyu, WANG Gangan, WANG Jiahui, CHEN Gang, ZHENG Ke, LI Xuemei. Correlation Between Neutrophil to Lymphocyte Ratio and eGFR in Diabetic Patients: A Cross-sectional Analysis Based on NHANES Data[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 379-385. DOI: 10.12290/xhyxzz.2024-0908
    [2]LI Yanbing, ZHOU Menglan, XU Yingchun. Progress in the Study of Polymyxin Heteroresistance Molecular Mechanisms[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 177-183. DOI: 10.12290/xhyxzz.2024-0159
    [3]MA Xing, LIU Chang. Prognosis and Treatment Strategies of FIGO 2018 Stage ⅢC Cervical Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1253-1260. DOI: 10.12290/xhyxzz.2024-0097
    [4]LIU Yuan, ZHAO Lin. Update and Interpretation of 2022 National Comprehensive Cancer Network Clinical Practice Guidelines for Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 999-1004. DOI: 10.12290/xhyxzz.2022-0271
    [5]Yuan XIA, Xiang-pei LI. The Role of MicroRNA Regulation of Interferon-α in the Pathogenesis of Systemic Lupus Erythematosus[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(6): 673-678. DOI: 10.3969/j.issn.1674-9081.2019.06.021
    [6]Li Wang, Kailiang Cheng. Database of Electronic Health Records: Application in Clinical Research and Bias Control[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(2): 177-182. DOI: 10.3969/j.issn.1674-9081.2018.02.014
    [7]Hao GUO, Wen-da WANG, Yi CAI, Yu-shi ZHANG. Progress in Research on MicroRNA in Tuberous Sclerosis Complex Related Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 283-288. DOI: 10.3969/j.issn.1674-9081.2017.05.017
    [8]Lei LI, Hui-min BAI, Shi-fu WENG, Li-min YANG, Jin-guang WU, Yi-zhuang XU, Keng SHEN. Laboratory Study for Analysis of Intra-tumor Heterogeneity of Ovarian Cancer by Fourier Transform Infrared Spectroscopy[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 268-273. DOI: 10.3969/j.issn.1674-9081.2017.05.014
    [10]Jie SHI, Zhi-yong LIANG, Tong-hua LIU. Expression of Cyclin D1 in Invasive Lobular Carcinoma of the Breast and Its Significance[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 8-12. DOI: 10.3969/j.issn.1674-9081.2012.01.004
  • Cited by

    Periodical cited type(13)

    1. 朱成占,张高伟,张勇. 经肛门内镜微创手术治疗直肠癌前病变的应用效果研究. 首都食品与医药. 2019(23): 29 .
    2. 封益飞,王诗佳,张悦,吉冰,钱文伟,季东健,张冬生,胥子玮,王勇,傅赞,孙跃明. 经肛门内镜微创手术治疗直肠占位的临床体会(附53例报告). 腹腔镜外科杂志. 2017(10): 753-756 .
    3. 刘斌,孙壮,杜继明,宫爱民. 20例直肠肿瘤经肛门内镜下手术治疗体会. 中国医疗器械信息. 2017(10): 67-68 .
    4. 林国乐,邱辉忠,周皎琳,牛备战,孙曦羽,陆君阳,张冠南. 经肛门内镜微创手术治疗直肠肿瘤的临床研究. 中国全科医学. 2016(03): 254-259 .
    5. 苏航,王竟,芦婷婷,鲁大鹏. 吻合器经肛门行直肠黏膜选择性切除钉合术治疗低位直肠良性肿瘤疗效分析. 大连医科大学学报. 2015(04): 355-357 .
    6. 张小虎,李志霞,安大立,刘靖,李伟. TEM治疗直肠肿瘤19例体会. 中华结直肠疾病电子杂志. 2015(05): 68-71 .
    7. 林国乐,邱辉忠,周皎琳,牛备战,孙曦羽,陆君阳,张冠南. 经肛门内镜微创手术的适应证与并发症. 中华结直肠疾病电子杂志. 2015(05): 63-67 .
    8. 彭华敏. 经肛门内镜微创手术(TEM)治疗29例直肠肿瘤的临床疗效观察. 现代诊断与治疗. 2014(06): 1377-1378 .
    9. 孙小林,杨龙江,娄善华. 经肛门内镜显微手术的临床分析. 中国药物经济学. 2014(S2): 428-430 .
    10. 黄兴,黄忠诚,刘祺. 低位直肠癌的治疗及术后评估. 中国现代普通外科进展. 2012(05): 385-388 .
    11. 曾庆智. 直肠癌外科手术治疗研究进展. 右江民族医学院学报. 2012(06): 793-795 .
    12. 陈镇武. 老年人低位直肠癌前切除术后回肠置管造口与横结肠造口的对比研究. 吉林医学. 2011(16): 3199-3200 .
    13. 刘宝华. 直肠癌局部切除术的国内外进展. 中国普外基础与临床杂志. 2011(11): 1132-1134 .

    Other cited types(8)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(21)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close