Citation: | LI Yanbing, ZHOU Menglan, XU Yingchun. Progress in the Study of Polymyxin Heteroresistance Molecular Mechanisms[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(1): 177-183. DOI: 10.12290/xhyxzz.2024-0159 |
Polymyxins, a class of cyclic peptide antibiotics, have become the last line of defense against gram-negative bacterial infections as the number of multidrug-resistant bacteria continues to rise. Heteroresistance refers to the presence of subpopulations within the same strain with varying sensitivities to antibiotics, which cannot be detected by standard clinical tests and may result in treatment failure. In several common gram-negative bacteria, mutations in the PhoPQ and PmrAB two-component systems are key contributors to polymyxin heteroresistance. This review aims to summarize recent research on the mechanisms of polymyxin heteroresistance in gram-negative bacteria, so as to provide insights for developing rapid detection methods and improving clinical treatment strategies.
[1] |
Falagas M E, Kasiakou S K. Colistin: the revival of polymyxins for the management of multidrug-resistant gram-negative bacterial infections[J]. Clin Infect Dis, 2005, 40(9): 1333-1341. DOI: 10.1086/429323
|
[2] |
Sun J, Zhang H M, Liu Y H, et al. Towards understanding MCR-like colistin resistance[J]. Trends Microbiol, 2018, 26(9): 794-808. DOI: 10.1016/j.tim.2018.02.006
|
[3] |
Bialvaei A Z, Samadi Kafil H. Colistin, mechanisms and prevalence of resistance[J]. Curr Med Res Opin, 2015, 31(4): 707-721. DOI: 10.1185/03007995.2015.1018989
|
[4] |
Kaye K S, Pogue J M, Tran T B, et al. Agents of last resort: polymyxin resistance[J]. Infect Dis Clin North Am, 2016, 30(2): 391-414. DOI: 10.1016/j.idc.2016.02.005
|
[5] |
Antonic V, Stojadinovic A, Zhang B X, et al. Pseudomonas aeruginosa induces pigment production and enhances virulence in a white phenotypic variant of Staphylococcus aureus[J]. Infect Drug Resist, 2013, 6: 175-186.
|
[6] |
Mlynarcik P, Kolar M. Molecular mechanisms of polymyxin resistance and detection of mcr genes[J]. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub, 2019, 163(1): 28-38. DOI: 10.5507/bp.2018.070
|
[7] |
胡付品, 郭燕, 朱德妹, 等. 2021年CHINET中国细菌耐药监测[J]. 中国感染与化疗杂志, 2022, 22(5): 521-530.
Hu F P, Guo Y, Zhu D M, et al. CHINET surveillance of antimicrobial resistance among the bacterial isolates in 2021[J]. Chin J Infect Chemother, 2022, 22(5): 521-530.
|
[8] |
MacNair C R, Stokes J M, Carfrae L A, et al. Overcoming mcr-1 mediated colistin resistance with colistin in combina-tion with other antibiotics[J]. Nat Commun, 2018, 9(1): 458. DOI: 10.1038/s41467-018-02875-z
|
[9] |
El-Halfawy O M, Valvano M A. Antimicrobial heteroresistance: an emerging field in need of clarity[J]. Clin Microbiol Rev, 2015, 28(1): 191-207. DOI: 10.1128/CMR.00058-14
|
[10] |
Band V I, Crispell E K, Napier B A, et al. Antibiotic failure mediated by a resistant subpopulation in Enterobacter cloacae[J]. Nat Microbiol, 2016, 1(6): 16053. DOI: 10.1038/nmicrobiol.2016.53
|
[11] |
El-Sayed Ahmed M A E, Zhong L L, Shen C, et al. Colistin and its role in the Era of antibiotic resistance: an extended review (2000—2019)[J]. Emerg Microbes Infect, 2020, 9(1): 868-885. DOI: 10.1080/22221751.2020.1754133
|
[12] |
Kon H, Hameir A, Nutman A, et al. Prevalence and clinical consequences of colistin heteroresistance and evolution into full resistance in carbapenem-resistant Acinetobacter baumannii[J]. Microbiol Spectr, 2023, 11(3): e0509322. DOI: 10.1128/spectrum.05093-22
|
[13] |
Karakonstantis S, Saridakis I. Colistin heteroresistance in Acinetobacter spp. : systematic review and meta-analysis of the prevalence and discussion of the mechanisms and potential therapeutic implications[J]. Int J Antimicrob Agents, 2020, 56(2): 106065. DOI: 10.1016/j.ijantimicag.2020.106065
|
[14] |
Charretier Y, Diene S M, Baud D, et al. Colistin heteroresistance and involvement of the PmrAB regulatory system in Acinetobacter baumannii[J]. Antimicrob Agents Chemother, 2018, 62(9): e00788-18.
|
[15] |
Rodriguez C H, Traglia G, Bastias N, et al. Discrepancies in susceptibility testing to colistin in Acinetobacter baumannii: the influence of slow growth and heteroresistance[J]. Int J Antimicrob Agents, 2019, 54(5): 587-591. DOI: 10.1016/j.ijantimicag.2019.08.010
|
[16] |
Jo J, Kwon K T, Ko K S. Multiple heteroresistance to tigecycline and colistin in Acinetobacter baumannii isolates and its implications for combined antibiotic treatment[J]. J Biomed Sci, 2023, 30(1): 37. DOI: 10.1186/s12929-023-00914-6
|
[17] |
Chen L J, Lin J, Lu H, et al. Deciphering colistin heteroresistance in Acinetobacter baumannii clinical isolates from Wenzhou, China[J]. J Antibiot (Tokyo), 2020, 73(7): 463-470. DOI: 10.1038/s41429-020-0289-2
|
[18] |
Howard-Anderson J, Davis M, Page A M, et al. Preval-ence of colistin heteroresistance in carbapenem-resistant Pseudomonas aeruginosa and association with clinical outcomes in patients: an observational study[J]. J Antimicrob Chemother, 2022, 77(3): 793-798. DOI: 10.1093/jac/dkab461
|
[19] |
Miller A K, Brannon M K, Stevens L, et al. PhoQ mutations promote lipid A modification and polymyxin resistance of Pseudomonas aeruginosa found in colistin-treated cystic fibrosis patients[J]. Antimicrob Agents Chemother, 2011, 55(12): 5761-5769. DOI: 10.1128/AAC.05391-11
|
[20] |
Poirel L, Jayol A, Nordmann P. Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes[J]. Clin Microbiol Rev, 2017, 30(2): 557-596. DOI: 10.1128/CMR.00064-16
|
[21] |
Lin J, Xu C Q, Fang R C, et al. Resistance and heteroresistance to colistin in Pseudomonas aeruginosa isolates from Wenzhou, China[J]. Antimicrob Agents Chemother, 2019, 63(10): e00556-19.
|
[22] |
Kapel N, Caballero J D, MacLean R C. Localized pmrB hypermutation drives the evolution of colistin heteroresistance[J]. Cell Rep, 2022, 39(10): 110929. DOI: 10.1016/j.celrep.2022.110929
|
[23] |
Patel G, Huprikar S, Factor S H, et al. Outcomes of carbapenem-resistant Klebsiella pneumoniae infection and the impact of antimicrobial and adjunctive therapies[J]. Infect Control Hosp Epidemiol, 2008, 29(12): 1099-1106. DOI: 10.1086/592412
|
[24] |
Wang Y F, Ma X Q, Zhao L L, et al. Heteroresistance is associated with in vitro regrowth during colistin treatment in carbapenem-resistant Klebsiella pneumoniae[J]. Front Microbiol, 2022, 13: 868991. DOI: 10.3389/fmicb.2022.868991
|
[25] |
Band V I, Satola S W, Burd E M, et al. Carbapenem-resistant Klebsiella pneumoniae exhibiting clinically undetected colistin heteroresistance leads to treatment failure in a murine model of infection[J]. mBio, 2018, 9(2): e02448-17.
|
[26] |
Bardet L, Baron S, Leangapichart T, et al. Deciphering heteroresistance to colistin in a Klebsiella pneumoniae isolate from Marseille, France[J]. Antimicrob Agents Chemother, 2017, 61(6): e00356-17.
|
[27] |
Sánchez-León I, Pérez-Nadales E, Marín-Sanz J A, et al. Heteroresistance to colistin in wild-type Klebsiella pneum-oniae isolates from clinical origin[J]. Microbiol Spectr, 2023, 11(6): e0223823. DOI: 10.1128/spectrum.02238-23
|
[28] |
Jayol A, Nordmann P, Brink A, et al. Heteroresistance to colistin in Klebsiella pneumoniae associated with alterations in the PhoPQ regulatory system[J]. Antimicrob Agents Chemother, 2015, 59(5): 2780-2784. DOI: 10.1128/AAC.05055-14
|
[29] |
Weng YS, Wang T, Huang B, et al. Multicenter study of colistin heteroresistance in carbapenem-resistant Klebsiella pneumoniae strains in China[J]. Microbiol Spectr, 2023, 11(4): e0221822. DOI: 10.1128/spectrum.02218-22
|
[30] |
Wang T, Wang X J, Chen S M, et al. Emergence of colistin-heteroresistant and carbapenem-resistant hyperviru-lent Klebsiella pneumoniae[J]. J Glob Antimicrob Resist, 2023, 35: 237-243. DOI: 10.1016/j.jgar.2023.09.020
|
[31] |
Halaby T, Kucukkose E, Janssen A B, et al. Genomic characterization of colistin heteroresistance in Klebsiella pneumoniae during a nosocomial outbreak[J]. Antimicrob Agents Chemother, 2016, 60(11): 6837-6843. DOI: 10.1128/AAC.01344-16
|
[32] |
Sato T, Wada T, Nishijima S, et al. Emergence of the novel aminoglycoside acetyltransferase variant aac(6')-Ib-D179Y and acquisition of colistin heteroresistance in carbapenem-resistant Klebsiella pneumoniae due to a disrupting mutation in the DNA repair enzyme MutS[J]. mBio, 2020, 11(6): e01954-20.
|
[33] |
Napier B A, Band V, Burd E M, et al. Colistin heteroresistance in Enterobacter cloacae is associated with cross-resistance to the host antimicrobial lysozyme[J]. Antimicrob Agents Chemother, 2014, 58(9): 5594-5597. DOI: 10.1128/AAC.02432-14
|
[34] |
Guérin F, Isnard C, Sinel C, et al. Cluster-dependent colistin hetero-resistance in Enterobacter cloacae complex[J]. J Antimicrob Chemother, 2016, 71(11): 3058-3061. DOI: 10.1093/jac/dkw260
|
[35] |
Fukuzawa S, Sato T, Aoki K, et al. High prevalence of colistin heteroresistance in specific species and lineages of Enterobacter cloacae complex derived from human clinical specimens[J]. Ann Clin Microbiol Antimicrob, 2023, 22(1): 60. DOI: 10.1186/s12941-023-00610-1
|
[36] |
Doijad S P, Gisch N, Frantz R, et al. Resolving colistin resistance and heteroresistance in Enterobacter species[J]. Nat Commun, 2023, 14(1): 140. DOI: 10.1038/s41467-022-35717-0
|
[37] |
Kang K N, Klein D R, Kazi M I, et al. Colistin heteroresistance in Enterobacter cloacae is regulated by PhoPQ-dependent 4-amino-4-deoxy-l-arabinose addition to lipid A[J]. Mol Microbiol, 2019, 111(6): 1604-1616. DOI: 10.1111/mmi.14240
|
[38] |
Telke A A, Olaitan A O, Morand S, et al. soxRS induces colistin hetero-resistance in enterobacter asburiae and enterobacter cloacae by regulating the acrAB-tolC efflux pump[J]. J Antimicrob Chemother, 2017, 72(10): 2715-2721. DOI: 10.1093/jac/dkx215
|
[39] |
Liu S X, Fang R C, Zhang Y, et al. Characterization of resistance mechanisms of Enterobacter cloacae complex co-resistant to carbapenem and colistin[J]. BMC Microbiol, 2021, 21(1): 208. DOI: 10.1186/s12866-021-02250-x
|
[40] |
Pantel L, Guérin F, Serri M, et al. Exploring cluster-dependent antibacterial activities and resistance pathways of NOSO-502 and colistin against Enterobacter cloacae complex species[J]. Antimicrob Agents Chemother, 2022, 66(11): e0077622. DOI: 10.1128/aac.00776-22
|
[41] |
Liu J, Huang Z Y, Ruan B, et al. Quantitative proteomic analysis reveals the mechanisms of polymyxin B toxicity to Escherichia coli[J]. Chemosphere, 2020, 259: 127449. DOI: 10.1016/j.chemosphere.2020.127449
|
[42] |
Jayol A, Nordmann P, André C, et al. Increased colistin resistance upon acquisition of the plasmid-mediated mcr-1 gene in Escherichia coli isolates with chromosomally encoded reduced susceptibility to polymyxins[J]. Int J Antimicrob Agents, 2017, 50(3): 503-504. DOI: 10.1016/j.ijantimicag.2017.07.006
|
[43] |
Kieffer N, Royer G, Decousser J W, et al. Mcr-9, an inducible gene encoding an acquired phosphoethanolamine transferase in Escherichia coli, and its origin[J]. Antimicrob Agents Chemother, 2019, 63(9): e00965-19.
|
[44] |
Sato T, Shiraishi T, Hiyama Y, et al. Contribution of novel amino acid alterations in PmrA or PmrB to colistin resistance in mcr-negative Escherichia coli clinical isolates, including major multidrug-resistant lineages O25b: H4-ST131-H30Rx and non-x[J]. Antimicrob Agents Chemother, 2018, 62(9): e00864-18.
|
[45] |
Phan M D, Nhu N T K, Achard M E S, et al. Modifications in the pmrB gene are the primary mechanism for the development of chromosomally encoded resistance to polymyxins in uropathogenic Escherichia coli[J]. J Antimicrob Chemother, 2017, 72(10): 2729-2736. DOI: 10.1093/jac/dkx204
|
[46] |
Cannatelli A, Giani T, Aiezza N, et al. An allelic variant of the PmrB sensor kinase responsible for colistin resistance in an Escherichia coli strain of clinical origin[J]. Sci Rep, 2017, 7(1): 5071. DOI: 10.1038/s41598-017-05167-6
|
[47] |
Salazar J, Alarcón M, Huerta J, et al. Phosphoethanola-mine addition to the Heptose Ⅰ of the Lipopolysaccharide modifies the inner core structure and has an impact on the binding of Polymyxin B to the Escherichia coli outer membrane[J]. Arch Biochem Biophys, 2017, 620: 28-34. DOI: 10.1016/j.abb.2017.03.008
|
[48] |
Liao W L, Lin J, Jia H Y, et al. Resistance and heteroresistance to colistin in Escherichia coli isolates from Wenzhou, China[J]. Infect Drug Resist, 2020, 13: 3551-3561. DOI: 10.2147/IDR.S273784
|
[49] |
Kuang Q H, He D D, Sun H R, et al. R93P substitution in the PmrB HAMP domain contributes to colistin heteroresistance in Escherichia coli isolates from swine[J]. Antimicrob Agents Chemother, 2020, 64(11): e01509-20.
|
[50] |
Zusman O, Avni T, Leibovici L, et al. Systematic review and meta-analysis of in vitro synergy of polymyxins and carbapenems[J]. Antimicrob Agents Chemother, 2013, 57(10): 5104-5111. DOI: 10.1128/AAC.01230-13
|