Li Wang, Kailiang Cheng. Database of Electronic Health Records: Application in Clinical Research and Bias Control[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(2): 177-182. doi: 10.3969/j.issn.1674-9081.2018.02.014
Citation: Li Wang, Kailiang Cheng. Database of Electronic Health Records: Application in Clinical Research and Bias Control[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(2): 177-182. doi: 10.3969/j.issn.1674-9081.2018.02.014

Database of Electronic Health Records: Application in Clinical Research and Bias Control

doi: 10.3969/j.issn.1674-9081.2018.02.014
More Information
  • The emergence of electronic health records (EHRs) provides a good opportunity for clinical studies to be carried out on large samples with high efficiency and at low costs. However, misunderstanding and inappropriate application of EHRs in clinical research are common. This paper brings us back to the essentials of epidemiology. We use a number of examples to discuss: the characteristics of EHRs, the relationship of data domains of EHRs with their corresponding variables (exposure, outcomes, and covariates) in epidemiological research, and how to use EHRs to estimate prevalence and incidence and to evaluate the effectiveness of treatment and policy. We also focus on the selection bias and confounding controls, especially unmeasured confounding controls. Hopefully, this paper would contribute to the integration of EHRs and clinical research and to the improvement of efficiency and quality of clinical research.
  • loading
  • [1] ISO/TR 20514: 2005. Health informatics-electronic health record-definition, scope, and context[EB/OL].https://www.iso.org/standard/39525.html.
    [2] 王雯, 刘艳梅, 谭婧, 等.回顾性数据库研究的概念、策划与研究数据库构建[J].中国循证医学杂志, 2018, 18:230-237. http://www.cnki.com.cn/Article/CJFDTotal-ZZXZ201802016.htm
    [3] Casey JA, Schwartz BS, Stewart WF, et al. Using electronic health records for population health research: a review of methods and applications[J]. Annu Rev Publ Health, 2016, 37:61-81. doi:  10.1146/annurev-publhealth-032315-021353
    [4] Kavakiotis I, Tsave O, Salifoglou A, et al. Machine learning and data mining methods in diabetes research[J]. Comput Struct Biotechnol J, 2017, 15:104-116. doi:  10.1016/j.csbj.2016.12.005
    [5] Ng SC, Leung WK, Shi HY, et al. Epidemiology of inflammatory bowel disease from 1981 to 2014: results from a territory-wide population-based registry in HongKong[J]. Infl-amm Bowel Dis, 2016, 22:1954-1960. doi:  10.1097/MIB.0000000000000846
    [6] Esteban-Vasallo MD, Dominguez-Berjon MF, Astray-Moch-ales J, et al. Epidemiological usefulness of population-based electronic clinical records in primary care: estimation of the prevalence of chronic diseases[J]. Fam Pract, 2009, 26:445-454. doi:  10.1093/fampra/cmp062
    [7] Tomasallo CD, Hanrahan LP, Tandias A, et al. Estimating wisconsin asthma prevalence using clinical electronic health records and public health data[J]. Am J Public Health, 2014, 104:E65-E73. http://europepmc.org/abstract/med/24228643
    [8] Bagley SC, Altman RB. Computing disease incidence, prevalence and comorbidity from electronic medical records[J]. J Biomed Inform, 2016, 63:108-111. doi:  10.1016/j.jbi.2016.08.005
    [9] Mamtani R, Haynes K, Finkelman BS, et al. Distinguishing incident and prevalent diabetes in an electronic medical records database[J]. Pharmacoepidemiol Drug Saf, 2014, 23:111-118. doi:  10.1002/pds.3557
    [10] Wu CY, Lin JT, Ho HJ, et al. Association of nucleos(t)-ide analogue therapy with reduced risk of hepatocellular carcinoma in patients with chronic hepatitis B: a nationwide cohort study[J]. Gastroenterology, 2014, 147:143-151 doi:  10.1053/j.gastro.2014.03.048
    [11] Qiu Q, Duan XW, Li Y, et al. Impact of partial reimbursement on hepatitis B antiviral utilization and adherence[J]. World J Gastroenterol, 2015, 21:9588-9597. doi:  10.3748/wjg.v21.i32.9588
    [12] Qiu Q, Li Y, Cheng K, et al. Cost-effectiveness of partial reimbursement for hepatitis B anti-viral drugs in Beijing, China: an analysis based on a retrospective cohort study[J]. Lancet, 2015, 386:S23-S23. http://www.onacademic.com/detail/journal_1000038924218110_f114.html
    [13] Lucas R, Ponsonby AL, McMichael A, et al. Observational analytic studies in multiple sclerosis: controlling bias through study design and conduct. The Australian Multicentre Study of Environment and Immune Function[J]. Mult Scler, 2007, 13:827-839. doi:  10.1177/1352458507077174
    [14] Brookhart MA, Sturmer T, Glynn RJ, et al. Confounding control in healthcare database research: challenges and potential approaches[J]. Med Care, 2010, 48:S114-S120. http://drc.bmj.com/lookup/external-ref?access_num=20473199&link_type=MED&atom=%2Fbmjdrc%2F5%2F1%2Fe000435.atom
    [15] Pearce N, Checkoway H, Kriebel D. Bias in occupational epidemiology studies[J]. Occup Environ Med, 2007, 64:562-568. doi:  10.1136/oem.2006.026690
    [16] Rosenbaum PR, Rubin DB. The central role of the propensity score in observational studies for causal effects[J]. Biometrika, 1983, 70:41-55. doi:  10.1093/biomet/70.1.41
    [17] Brookhart MA, Wang PS, Solomon DH, et al. Evaluating short-term drug effects using a physician-specific prescribing preference as an instrumental variable[J]. Epidemiology, 2006, 17:268-275. doi:  10.1097/01.ede.0000193606.58671.c5
    [18] Ashenfelter O, Card D. Using the longitudinal structure of earnings to estimate the effect of training programs[J]. Rev Econ Stat, 1985, 67:648-660. doi:  10.2307/1924810
    [19] Austin PC, Grootendorst P, Anderson GM. A comparison of the ability of different propensity score models to balance measured variables between treated and untreated subjects: a Monte Carlo study[J]. Stat Med, 2007, 26:734-753. doi:  10.1002/sim.2580
    [20] Mccandless LC, Gustafson P, Austin PC. Bayesian propensity score analysis for observational data[J]. Stat Med, 2009, 28:94-112. doi:  10.1002/sim.3460
    [21] Li L, Shen C, Wu AC, et al. Propensity score-based sensitivity analysis method for uncontrolled confounding[J]. Am J Epidemiol, 2011, 174:345. doi:  10.1093/aje/kwr096
    [22] Schlesselman JJ. Assessing effects of confounding variables[J]. Am J Epidemiol, 1978, 108:3-8. http://academic.oup.com/aje/article/108/1/3/195354
    [23] Greenland S. The Impact of Prior Distributions for uncont-rolled confounding and response bias[J]. JASA, 2003, 98:47-54. doi:  10.1198/01621450338861905
    [24] Mccandless LC, Gustafson P, Austin PC, et al. Covariate balance in a Bayesian propensity score analysis of beta blocker therapy in heart failure patients[J]. Epidemiol Perspect Innov, 2009, 6:5. doi:  10.1186/1742-5573-6-5
    [25] An W. Bayesian propensity score estimators: incorporating uncertainties in propensity scores into causal inference[J]. Sociol Methodol, 2015, 40:151-189. http://biomet.oxfordjournals.org/cgi/ijlink?linkType=ABST&journalCode=spsmx&resid=40/1/151
    [26] Greenland S. An introduction to instrumental variables for epidemiologists[J]. Int J Epidemiol 2000;29:1102. http://ije.oxfordjournals.org/content/29/4/722
    [27] Stukel TA, Fisher ES, Wennberg DE, et al. Analysis of observational studies in the presence of treatment selection bias: effects of invasive cardiac management on AMI survival using propensity score and instrumental variable methods[J]. JAMA, 2007, 297:278-285. doi:  10.1001/jama.297.3.278
    [28] Ashenfelter O. Estimating the effect of training programs on earnings[J]. Rev Econ Stat, 1978, 60:47-57. doi:  10.2307/1924332
    [29] 黄远飞, 张家业.城乡医保整合对农村居民医疗服务利用的影响-以广州市为例[J].中国公共政策评论, 2017, 1:34-52. http://search.cnki.net/down/default.aspx?filename=ZGZP201701004&dbcode=CJFD&year=2017&dflag=pdfdown
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (250) PDF downloads(251) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return