Citation: | YANG Xinyu, LI Yanjie, QIN Hewei, LIU Dandan, ZHAO Nannan, JIANG Jingjing. The Role of SIRT1 in Vascular Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1124-1130. DOI: 10.12290/xhyxzz.2024-0062 |
Vascular cognitive impairment (VCI) denotes a wide range of cognitive deficiencies resulting from cerebrovascular risk factors and cerebrovascular diseases. Sirtuin 1 (SIRT1), as a deacetylase, can mediate the deacetylation of histones and non-histone proteins. It is involved in regulating multiple pathophysiological processes of VCI, including neuroinflammation reduction, oxidative stress inhibition, cell apoptosis decrease, and blood-brain barrier protection, serving as a target for VCI treatment. This paper summarizes SIRT1 and the molecular mechanisms of targeting SIRT1 in order to provide a reference for the clinical treatment of VCI.
[1] |
Badji A, Youwakim J, Cooper A, et al. Vascular cognitive impairment-Past, present, and future challenges[J]. Ageing Res Rev, 2023, 90: 102042. DOI: 10.1016/j.arr.2023.102042
|
[2] |
Deng Y, Zou J Q, Hong Y, et al. Higher circulating trimethylamine N-oxide aggravates cognitive impairment probably via downregulating hippocampal SIRT1 in vascular dementia rats[J]. Cells, 2022, 11(22): 3650. DOI: 10.3390/cells11223650
|
[3] |
Zhang Y Q, Anoopkumar-Dukie S, Arora D, et al. Review of the anti-inflammatory effect of SIRT1 and SIRT2 modula-tors on neurodegenerative diseases[J]. Eur J Pharmacol, 2020, 867: 172847. DOI: 10.1016/j.ejphar.2019.172847
|
[4] |
Ren Z H, He H Y, Zuo Z C, et al. The role of different SIRT1-mediated signaling pathways in toxic injury[J]. Cell Mol Biol Lett, 2019, 24: 36. DOI: 10.1186/s11658-019-0158-9
|
[5] |
Nandave M, Acharjee R, Bhaduri K, et al. A pharmacological review on SIRT 1 and SIRT 2 proteins, activators, and inhibitors: call for further research[J]. Int J Biol Macromol, 2023, 242(Pt 1): 124581.
|
[6] |
Tang H, Wen J, Qin T, et al. New insights into Sirt1: potential therapeutic targets for the treatment of cerebral ischemic stroke[J]. Front Cell Neurosci, 2023, 17: 1228761. DOI: 10.3389/fncel.2023.1228761
|
[7] |
Yang Y S, Liu Y, Wang Y W, et al. Regulation of SIRT1 and its roles in inflammation[J]. Front Immunol, 2022, 13: 831168. DOI: 10.3389/fimmu.2022.831168
|
[8] |
Singh V, Ubaid S. Role of silent information regulator 1(SIRT1) in regulating oxidative stress and inflammation[J]. Inflammation, 2020, 43(5): 1589-1598. DOI: 10.1007/s10753-020-01242-9
|
[9] |
Fangma Y, Wan H T, Shao C Y, et al. Research progress on the role of sirtuin 1 in cerebral ischemia[J]. Cell Mol Neurobiol, 2023, 43(5): 1769-1783. DOI: 10.1007/s10571-022-01288-3
|
[10] |
Mishra P, Mittal A K, Kalonia H, et al. SIRT1 promotes neuronal fortification in neurodegenerative diseases through attenuation of pathological hallmarks and enhancement of cellular lifespan[J]. Curr Neuropharmacol, 2021, 19(7): 1019-1037.
|
[11] |
Fu C Y, Zhong C R, Yang Y T, et al. Sirt1 activator SRT2104 protects against oxygen-glucose deprivation/reoxygenation-induced injury via regulating microglia polarization by modulating Sirt1/NF-κB pathway[J]. Brain Res, 2021, 1753: 147236. DOI: 10.1016/j.brainres.2020.147236
|
[12] |
Liu H H, Xu S, Wang C, et al. The beneficial role of sirtuin 1 in preventive or therapeutic options of neurodegenerative diseases[J]. Neuroscience, 2022, 504: 79-92. DOI: 10.1016/j.neuroscience.2022.09.021
|
[13] |
Rajeev V, Chai Y L, Poh L, et al. Chronic cerebral hypoperfusion: a critical feature in unravelling the etiology of vascular cognitive impairment[J]. Acta Neuropathol Commun, 2023, 11(1): 93. DOI: 10.1186/s40478-023-01590-1
|
[14] |
Fagerli E, Escobar I, Ferrier F J, et al. Sirtuins and cognition: implications for learning and memory in neurological disorders[J]. Front Physiol, 2022, 13: 908689. DOI: 10.3389/fphys.2022.908689
|
[15] |
Tian Z M, Ji X M, Liu J. Neuroinflammation in vascular cognitive impairment and dementia: current evidence, advances, and prospects[J]. Int J Mol Sci, 2022, 23(11): 6224. DOI: 10.3390/ijms23116224
|
[16] |
Zhao B, Li M, Li B Y, et al. The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice[J]. Neural Regen Res, 2024, 19(9): 2019-2026. DOI: 10.4103/1673-5374.390951
|
[17] |
Li M X, Meng N, Guo X, et al. Dl-3-n-Butylphthalide promotes remyelination and suppresses inflammation by regulat-ing AMPK/SIRT1 and STAT3/NF-κB signaling in chronic cerebral hypoperfusion[J]. Front Aging Neurosci, 2020, 12: 137. DOI: 10.3389/fnagi.2020.00137
|
[18] |
高琛, 李菲, 孙峰山. 银杏内酯调节SIRT1/HMGB1信号通路对血管性认知障碍大鼠小胶质细胞活化的影响[J]. 中药材, 2023, 46(9): 2302-2308.
Gao C, Li F, Sun F S. The effect of ginkgolides regulating the SIRT1/HMGB1 signaling pathway on the activation of microglia in rats with vascular cognitive impairment[J]. J Chin Med Mater, 2023, 46(9): 2302-2308.
|
[19] |
Yao P, Li Y L, Yang Y J, et al. Triptolide improves cognitive dysfunction in rats with vascular dementia by activating the SIRT1/PGC-1α signaling pathway[J]. Neurochem Res, 2019, 44(8): 1977-1985. DOI: 10.1007/s11064-019-02831-3
|
[20] |
Zhao Y, Zhang J W, Zheng Y L, et al. NAD+ improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway[J]. J Neuroinflammation, 2021, 18(1): 207. DOI: 10.1186/s12974-021-02250-8
|
[21] |
Tarantini S, Valcarcel-Ares M N, Toth P, et al. Nicotina-mide mononucleotide (NMN) supplementation rescues cerebromicrovascular endothelial function and neurovascular coupling responses and improves cognitive function in aged mice[J]. Redox Biol, 2019, 24: 101192. DOI: 10.1016/j.redox.2019.101192
|
[22] |
Ma J, Chen T, Wang R R. Astragaloside Ⅳ ameliorates cognitive impairment and protects oligodendrocytes from antioxidative stress via regulation of the SIRT1/Nrf2 signaling pathway[J]. Neurochem Int, 2023, 167: 105535. DOI: 10.1016/j.neuint.2023.105535
|
[23] |
Kuang H, Zhou Z F, Zhu Y G, et al. Pharmacological treatment of vascular dementia: a molecular mechanism perspective[J]. Aging Dis, 2021, 12(1): 308-326. DOI: 10.14336/AD.2020.0427
|
[24] |
Xu M, Zhao Y L, Gong M J, et al. Dehydroevodiamine ameliorates neurological dysfunction after traumatic brain injury in mice via regulating the SIRT1/FOXO3a/Bim pathway[J]. Phytomedicine, 2024, 125: 155321. DOI: 10.1016/j.phymed.2023.155321
|
[25] |
Peng D, Qiao H Z, Tan H Y, et al. Ligustilide ameliorates cognitive impairment via AMPK/SIRT1 pathway in vascular dementia rat[J]. Metab Brain Dis, 2022, 37(5): 1401-1414. DOI: 10.1007/s11011-022-00947-0
|
[26] |
Wang K J, Zhang W Q, Liu J J, et al. Piceatannol protects against cerebral ischemia/reperfusion-induced apoptosis and oxidative stress via the Sirt1/FoxO1 signaling pathway[J]. Mol Med Rep, 2020, 22(6): 5399-5411. DOI: 10.3892/mmr.2020.11618
|
[27] |
Liu Q H, Radwanski R, Babadjouni R, et al. Experimental chronic cerebral hypoperfusion results in decreased pericyte coverage and increased blood-brain barrier permeability in the corpus callosum[J]. J Cereb Blood Flow Metab, 2019, 39(2): 240-250. DOI: 10.1177/0271678X17743670
|
[28] |
Rajeev V, Fann D Y, Dinh Q N, et al. Pathophysiology of blood brain barrier dysfunction during chronic cerebral hypoperfusion in vascular cognitive impairment[J]. Theranostics, 2022, 12(4): 1639-1658. DOI: 10.7150/thno.68304
|
[29] |
Stamatovic S M, Martinez-Revollar G, Hu A N, et al. Decline in sirtuin-1 expression and activity plays a critical role in blood-brain barrier permeability in aging[J]. Neurobiol Dis, 2019, 126: 105-116. DOI: 10.1016/j.nbd.2018.09.006
|
[30] |
Sun X M, Liu B. Donepezil ameliorates oxygen-glucose deprivation/reoxygenation-induced brain microvascular endothe-lial cell dysfunction via the SIRT1/FOXO3a/NF-κB path-ways[J]. Bioengineered, 2022, 13(3): 7760-7770. DOI: 10.1080/21655979.2022.2045833
|
[31] |
Thangwong P, Jearjaroen P, Tocharus C, et al. Melatonin suppresses inflammation and blood brain barrier disruption in rats with vascular dementia possibly by activating the SIRT1/PGC-1α/PPARγ signaling pathway[J]. Inflammopharmacology, 2023, 31(3): 1481-1493. DOI: 10.1007/s10787-023-01181-5
|
[32] |
Lin H W, Zhang J Y, Dai Y L, et al. Neurogranin as an important regulator in swimming training to improve the spatial memory dysfunction of mice with chronic cerebral hypoperfusion[J]. J Sport Health Sci, 2023, 12(1): 116-129. DOI: 10.1016/j.jshs.2022.01.008
|
[33] |
Zhao N, Zhu X F, Xie L Y, et al. The combination of citicoline and nicotinamide mononucleotide induces neurite outgrowth and mitigates vascular cognitive impairment via SIRT1/CREB pathway[J]. Cell Mol Neurobiol, 2023, 43(8): 4261-4277. DOI: 10.1007/s10571-023-01416-7
|
[34] |
Hu Z L, Li F Y, Zhou X L, et al. Momordica charantia polysaccharides modulate the differentiation of neural stem cells via SIRT1/β-catenin axis in cerebral ischemia/reperfusion[J]. Stem Cell Res Ther, 2020, 11(1): 485. DOI: 10.1186/s13287-020-02000-2
|
[35] |
Ma J Y, Fan H D, Cai H, et al. Promotion of Momordica charantia polysaccharides on neural stem cell proliferation by increasing SIRT1 activity after cerebral ischemia/reperfusion in rats[J]. Brain Res Bull, 2021, 170: 254-263. DOI: 10.1016/j.brainresbull.2021.02.016
|
[1] | LI Jinpeng, GUO Jie, LIU Tao, WEI Xiaotao, SONG Yuan, WANG Weiwei, HE Zhijun. Progress on the Main Mechanism Affecting Flap Survival[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 416-422. DOI: 10.12290/xhyxzz.2024-0253 |
[2] | LIU Yan, DONG Xingang, WANG Xiaoyuan, QI Gege, REN Yiqin, ZHOU Lianpeng, LI Hui, ZHANG Suqing, LI Weifeng. Research Progress on the Correlation Between Mitophagy and Vascular Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 338-349. DOI: 10.12290/xhyxzz.2024-0947 |
[3] | JIANG Yubin, WANG Xingming, ZHANG Yue, ZHOU Zhiqiang, YANG Jianjun. Esketamine Improves Working Memory Impairment in Neuropathic Mice Through Hippocampal BDNF-TrkB Pathway[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 328-334. DOI: 10.12290/xhyxzz.2023-0581 |
[4] | WANG Caihong, LIU Rongxin, TANG Feng, WEI Xiaotao, XU Ziqing, HOU Huaijing, ZHANG Jie, ZHAO Yongqiang, XUE Jianjun. Research Progress on the Role of NLRP3 Inflammasome and Microglia in Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1282-1288. DOI: 10.12290/xhyxzz.2023-0217 |
[5] | WANG Jie, LI Xiangmin. Protective Effect of Mesenchymal Stem Cells on Cerebral Ischemic Reperfusion Injury[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 472-477. DOI: 10.12290/xhyxzz.2022-0734 |
[6] | Xiang-yi KONG, Jian GUAN, Ren-zhi WANG. Neuroprotective Effects of p66Shc Knock-out on Hypoxic-ischemic Brain Injury in Mice[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(6): 359-363. DOI: 10.3969/j.issn.1674-9081.2017.06.008 |
[7] | Hong Yang, Shanshan Hu, Gechong Ruan, Xiaoou Yang, Jiaming Qian. Expression of ARHI and HuR in PANC-1 Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(1): 39-42. DOI: 10.3969/j.issn.1674-9081.2017.01.009 |
[8] | Qian ZHANG, Xiao-chun LIANG, Qing SUN, Pu-yan WANG, Wen-zhi HUANG, Bo-wu LI, Yan-dong ZHANG, Yun-zhou GAO. Effect of Jinmaitong on Oxidative Stress in Dorsal Root Ganglion of Diabetic Rats[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(4): 441-447. DOI: 10.3969/j.issn.1674-9081.2012.04.018 |
[9] | Xiao-hua SHI, Zhi-yong LIANG, Huan-wen WU, Xin-yu REN, Tong-hua LIU. Effect of RNA Interference Plasmid on the Expression of Oncogene AKT2 in Pancreatic Cancer Cell Line Panc-1[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 102-108. DOI: 10.3969/j.issn.1674-9081.2012.01.021 |
[10] | Jian CAO, Yi-ning WANG, Ling-yan KONG, Hua-dan XUE, Jing LEI, Yong-lan HE, Zhuo LI, Jie MENG, Zheng-yu JIN. SD Rat Adipose Derived Stem Cells Labeled with Ultrasmall Superparamagnetic Iron Oxide[J]. Medical Journal of Peking Union Medical College Hospital, 2011, 2(3): 252-257. DOI: 10.3969/j.issn.1674-9081.2011.03.013 |
1. |
袁佳琳,王慧娟,刘晓慧,王丽君,陈苗苗. 急性脑卒中患者疲劳相关症状群的网络分析. 军事护理. 2025(03): 57-61 .
![]() | |
2. |
傅佳,冯富媛,欧册华,廖常莉. 中枢卒中后疼痛的神经机制与临床管理策略. 西南医科大学学报. 2024(06): 553-558 .
![]() |