LIU Yan, DONG Xingang, WANG Xiaoyuan, QI Gege, REN Yiqin, ZHOU Lianpeng, LI Hui, ZHANG Suqing, LI Weifeng. Research Progress on the Correlation Between Mitophagy and Vascular Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 338-349. DOI: 10.12290/xhyxzz.2024-0947
Citation: LIU Yan, DONG Xingang, WANG Xiaoyuan, QI Gege, REN Yiqin, ZHOU Lianpeng, LI Hui, ZHANG Suqing, LI Weifeng. Research Progress on the Correlation Between Mitophagy and Vascular Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 338-349. DOI: 10.12290/xhyxzz.2024-0947

Research Progress on the Correlation Between Mitophagy and Vascular Cognitive Impairment

Funds: 

Special Research Project of Traditional Chinese Medicine in Henan Province 2024ZY1006

Special Research Project of Traditional Chinese Medicine in Henan Province 2024ZY1068

Science and Technology Development Program of Henan Province 242102310514

Major Project of Scientific Research of Traditional Chinese Medicine in Henan Province 2022ZYZD05

The Seventh Batch of National TCM Experts' Academic Experience Inheritance Work Project Yu TCM Letter [2022] No.3

Henan University of Traditional Chinese Medicine Postgraduate Research Capacity Promotion Plan for 2024 2024KYCX086

More Information
  • Corresponding author:

    DONG Xingang, E-mail: 35997052@qq.com

  • Received Date: November 19, 2024
  • Accepted Date: February 16, 2025
  • Available Online: February 28, 2025
  • Publish Date: February 27, 2025
  • Issue Publish Date: March 29, 2025
  • Vascular cognitive impairment (VCI), caused by cerebrovascular dysfunction, severely impacts the quality of life in the elderly population, yet effective therapeutic approaches remain limited. Mitophagy, a selective mitochondrial quality-control mechanism, has emerged as a critical focus in neurological disease research. Accumulating evidence indicates that mitophagy modulates oxidative stress, neuroinflammation, and neuronal apoptosis. Key signaling pathways associated with mitophagy—including PINK1/Parkin, BNIP3/Nix, FUNDC1, PI3K/Akt/mTOR, and AMPK—have been identified as potential therapeutic targets for VCI. This review summarizes the mechanistic roles of mitophagy in VCI pathogenesis and explores emerging therapeutic strategies targeting these pathways, aiming to provide novel insights for clinical intervention and advance the development of effective treatments for VCI.

  • [1]
    Rundek T, Tolea M, Ariko T, et al. Vascular cognitive impairment (VCI)[J]. Neurotherapeutics, 2022, 19(1): 68-88. DOI: 10.1007/s13311-021-01170-y
    [2]
    Han Y, Zhou A H, Li F Y, et al. Apolipoprotein E ε4 allele is associated with vascular cognitive impairment no dementia in Chinese population[J]. J Neurol Sci, 2020, 409: 116606. DOI: 10.1016/j.jns.2019.116606
    [3]
    Galluzzi L, Baehrecke E H, Ballabio A, et al. Molecular definitions of autophagy and related processes[J]. EMBO J, 2017, 36(13): 1811-1836. DOI: 10.15252/embj.201796697
    [4]
    陈丽敏, 白艳杰, 王岩, 等. 线粒体质量控制失调介导卒中后认知障碍的研究进展[J]. 中国病理生理杂志, 2022, 38(7): 1320-1327.

    Chen L M, Bai Y J, Wang Y, et al. Progress in mitochondrial quality control disorder-mediated cognitive impairment after stroke[J]. Chin J Pathophysiol, 2022, 38(7): 1320-1327.
    [5]
    Li X N, Huang L J, Lan J Q, et al. Molecular mechanisms of mitophagy and its roles in neurodegenerative diseases[J]. Pharmacol Res, 2021, 163: 105240. DOI: 10.1016/j.phrs.2020.105240
    [6]
    Siwicka-Gieroba D, Robba C, Go acki J, et al. Cerebral oxygen delivery and consumption in brain-injured patients[J]. J Pers Med, 2022, 12(11): 1763. DOI: 10.3390/jpm12111763
    [7]
    Lu Y Y, Li Z J, Zhang S Q, et al. Cellular mitophagy: mechanism, roles in diseases and small molecule pharmacological regulation[J]. Theranostics, 2023, 13(2): 736-766. DOI: 10.7150/thno.79876
    [8]
    Li J, Wu J Y, Zhou X Y, et al. Targeting neuronal mitophagy in ischemic stroke: an update[J]. Burns Trauma, 2023, 11: tkad018. DOI: 10.1093/burnst/tkad018
    [9]
    Sies H, Jones D P. Reactive oxygen species (ROS) as pleiotropic physiological signalling agents[J]. Nat Rev Mol Cell Biol, 2020, 21(7): 363-383. DOI: 10.1038/s41580-020-0230-3
    [10]
    Wang F X, Cao Y, Ma L N, et al. Dysfunction of cerebrovascular endothelial cells: prelude to vascular dementia[J]. Front Aging Neurosci, 2018, 10: 376. DOI: 10.3389/fnagi.2018.00376
    [11]
    Schofield J H, Schafer Z T. Mitochondrial reactive oxygen species and mitophagy: a complex and nuanced relationship[J]. Antioxid Redox Signal, 2021, 34(7): 517-530. DOI: 10.1089/ars.2020.8058
    [12]
    Sun W, Li X Y, Chu Z H, et al. Euxanthone improves cognitive impairment by attenuating mitochondrial fragmentation and suppressing oxidative stress[J]. Cent Eur J Immunol, 2021, 46(4): 446-455. DOI: 10.5114/ceji.2021.111444
    [13]
    Livingston M J, Wang J H, Zhou J L, et al. Clearance of damaged mitochondria via mitophagy is important to the protective effect of ischemic preconditioning in kidneys[J]. Autophagy, 2019, 15(12): 2142-2162. DOI: 10.1080/15548627.2019.1615822
    [14]
    Shefa U, Jeong N Y, Song I O, et al. Mitophagy links oxidative stress conditions and neurodegenerative diseases[J]. Neural Regen Res, 2019, 14(5): 749-756. DOI: 10.4103/1673-5374.249218
    [15]
    He Q, Li Z Y, Meng C C, et al. Parkin-dependent mitophagy is required for the inhibition of ATF4 on NLRP3 inflammasome activation in cerebral ischemia-reperfusion injury in rats[J]. Cells, 2019, 8(8): 897. DOI: 10.3390/cells8080897
    [16]
    Ding H G, Li Y, Chen S L, et al. Fisetin ameliorates cognitive impairment by activating mitophagy and suppressing neuroinflammation in rats with sepsis-associated encephalopathy[J]. CNS Neurosci Ther, 2022, 28(2): 247-258. DOI: 10.1111/cns.13765
    [17]
    Kuang H, Zhou Z F, Zhu Y G, et al. Pharmacological treatment of vascular dementia: a molecular mechanism perspective[J]. Aging Dis, 2021, 12(1): 308-326. DOI: 10.14336/AD.2020.0427
    [18]
    Wu M, Lu G, Lao Y Z, et al. Garciesculenxanthone B induces PINK1-Parkin-mediated mitophagy and prevents ischemia-reperfusion brain injury in mice[J]. Acta Pharmacol Sin, 2021, 42(2): 199-208. DOI: 10.1038/s41401-020-0480-9
    [19]
    Wang H Y, Chen S H, Zhang Y M, et al. Electroacupuncture ameliorates neuronal injury by Pink1/Parkin-mediated mitophagy clearance in cerebral ischemia-reperfusion[J]. Nitric Oxide, 2019, 91: 23-34. DOI: 10.1016/j.niox.2019.07.004
    [20]
    Liu Y W, Chen X, Gong Q H, et al. Osthole improves cognitive function of vascular dementia rats: reducing Aβ deposition via inhibition NLRP3 inflammasome[J]. Biol Pharm Bull, 2020, 43(9): 1315-1323. DOI: 10.1248/bpb.b20-00112
    [21]
    Büeler H. Mitochondrial and autophagic regulation of adult neurogenesis in the healthy and diseased brain[J]. Int J Mol Sci, 2021, 22(7): 3342. DOI: 10.3390/ijms22073342
    [22]
    Bakula D, Scheibye-Knudsen M. MitophAging: mitophagy in aging and disease[J]. Front Cell Dev Biol, 2020, 8: 239. DOI: 10.3389/fcell.2020.00239
    [23]
    Poláchová E, Bach K, Heuten E, et al. Chemical blockage of the mitochondrial rhomboid protease PARL by novel ketoamide inhibitors reveals its role in PINK1/Parkin-dependent mitophagy[J]. J Med Chem, 2023, 66(1): 251-265. DOI: 10.1021/acs.jmedchem.2c01092
    [24]
    Picca A, Faitg J, Auwerx J, et al. Mitophagy in human health, ageing and disease[J]. Nat Metab, 2023, 5(12): 2047-2061. DOI: 10.1038/s42255-023-00930-8
    [25]
    Li J, Yang D M, Li Z P, et al. PINK1/Parkin-mediated mitophagy in neurodegenerative diseases[J]. Ageing Res Rev, 2023, 84: 101817. DOI: 10.1016/j.arr.2022.101817
    [26]
    Lamark T, Johansen T. Mechanisms of selective autophagy[J]. Annu Rev Cell Dev Biol, 2021, 37: 143-169. DOI: 10.1146/annurev-cellbio-120219-035530
    [27]
    Onishi M, Yamano K, Sato M, et al. Molecular mechanisms and physiological functions of mitophagy[J]. EMBO J, 2021, 40(3): e104705. DOI: 10.15252/embj.2020104705
    [28]
    Schroeder S, Hofer S J, Zimmermann A, et al. Dietary spermidine improves cognitive function[J]. Cell Rep, 2021, 35(2): 108985. DOI: 10.1016/j.celrep.2021.108985
    [29]
    Hong T S, Zhou Y, Peng L, et al. Knocking down peroxiredoxin 6 aggravates cerebral ischemia-reperfusion injury by enhancing mitophagy[J]. Neuroscience, 2022, 482: 30-42. DOI: 10.1016/j.neuroscience.2021.11.043
    [30]
    Huang S Y, Hong Z, Zhang L G, et al. CERKL alleviates ischemia reperfusion-induced nervous system injury through modulating the SIRT1/PINK1/Parkin pathway and mitoph-agy induction[J]. Biol Chem, 2022, 403(7): 691-701. DOI: 10.1515/hsz-2021-0411
    [31]
    Shao Z Q, Dou S S, Zhu J G, et al. Apelin-36 protects HT22 cells against oxygen-glucose deprivation/reperfusion-induced oxidative stress and mitochondrial dysfunction by promoting SIRT1-mediated PINK1/Parkin-dependent mitophagy[J]. Neurotox Res, 2021, 39(3): 740-753. DOI: 10.1007/s12640-021-00338-w
    [32]
    Wei J, Xie J X, He J H, et al. Active fraction of Polyrhachis vicina (Roger) alleviated cerebral ischemia/reperfusion injury by targeting SIRT3-mediated mitophagy and angiogenesis[J]. Phytomedicine, 2023, 121: 155104. DOI: 10.1016/j.phymed.2023.155104
    [33]
    Wang C Z, Yang Y, Zhang Y Q, et al. Protective effects of metformin against osteoarthritis through upregulation of SIRT3-mediated PINK1/Parkin-dependent mitophagy in primary chondrocytes[J]. Biosci Trends, 2019, 12(6): 605-612.
    [34]
    Zhao Y, Zhang J W, Zheng Y L, et al. NAD+ improves cognitive function and reduces neuroinflammation by ameliorating mitochondrial damage and decreasing ROS production in chronic cerebral hypoperfusion models through Sirt1/PGC-1α pathway[J]. J Neuroinflammation, 2021, 18(1): 207. DOI: 10.1186/s12974-021-02250-8
    [35]
    Han B, Jiang W, Liu H J, et al. Upregulation of neuronal PGC-1α ameliorates cognitive impairment induced by chronic cerebral hypoperfusion[J]. Theranostics, 2020, 10(6): 2832-2848. DOI: 10.7150/thno.37119
    [36]
    Han B, Zhao H, Gong X J, et al. Upregulation of PGC-1α attenuates oxygen-glucose deprivation-induced hippocampal neuronal injury[J]. Neural Plast, 2022, 2022: 9682999.
    [37]
    Sun E Y, Zhang J, Deng Y, et al. Docosahexaenoic acid alleviates brain damage by promoting mitophagy in mice with ischaemic stroke[J]. Oxid Med Cell Longev, 2022, 2022: 3119649.
    [38]
    Marinković M, Šprung M, Novak I. Dimerization of mito-phagy receptor BNIP3L/NIX is essential for recruitment of autophagic machinery[J]. Autophagy, 2021, 17(5): 1232-1243. DOI: 10.1080/15548627.2020.1755120
    [39]
    Wu X L, Zheng Y R, Liu M R, et al. BNIP3L/NIX degradation leads to mitophagy deficiency in ischemic brains[J]. Autophagy, 2021, 17(8): 1934-1946. DOI: 10.1080/15548627.2020.1802089
    [40]
    Yuan Y, Zheng Y R, Zhang X N, et al. BNIP3L/NIX-mediated mitophagy protects against ischemic brain injury independent of PARK2[J]. Autophagy, 2017, 13(10): 1754-1766. DOI: 10.1080/15548627.2017.1357792
    [41]
    Luo J, Tan J Y, Jiang N, et al. Platonin protects against cerebral ischemia/reperfusion injury in rats by inhibiting NLRP3 inflammasomes via BNIP3/LC3 signaling mediated autophagy[J]. Brain Res Bull, 2022, 180: 12-23. DOI: 10.1016/j.brainresbull.2021.12.008
    [42]
    Li W, Zhang X L, Zhuang H X, et al. MicroRNA-137 is a novel hypoxia-responsive microRNA that inhibits mitophagy via regulation of two mitophagy receptors FUNDC1 and NIX[J]. J Biol Chem, 2014, 289(15): 10691-10701. DOI: 10.1074/jbc.M113.537050
    [43]
    秦红玲, 胡跃强, 谭露露, 等. 清热化瘀方调控miR-137/Nix通路介导的线粒体自噬改善大鼠脑缺血-再灌注损伤[J]. 中药材, 2023, 46(1): 191-196.

    Qin H L, Hu Y Q, Tan L L, et al. Mechanism of Qingre Huayu formula regulating mitochondrial autophagy mediated by miR-137/Nix pathway to improve cerebral ischemia-reperfusion injury in rats[J]. J Chin Med Mater, 2023, 46(1): 191-196.
    [44]
    Deng Z X, Ou H, Ren F, et al. LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells[J]. Biol Res, 2020, 53(1): 38. DOI: 10.1186/s40659-020-00304-4
    [45]
    Choi G E, Lee H J, Chae C W, et al. BNIP3L/NIX-mediated mitophagy protects against glucocorticoid-induced synapse defects[J]. Nat Commun, 2021, 12(1): 487. DOI: 10.1038/s41467-020-20679-y
    [46]
    Kuang Y, Ma K L, Zhou C Q, et al. Structural basis for the phosphorylation of FUNDC1 LIR as a molecular Switch of mitophagy[J]. Autophagy, 2016, 12(12): 2363-2373. DOI: 10.1080/15548627.2016.1238552
    [47]
    Wu W X, Li W, Chen H, et al. FUNDC1 is a novel mitochondrial-associated-membrane (MAM) protein required for hypoxia-induced mitochondrial fission and mitophagy[J]. Autophagy, 2016, 12(9): 1675-1676. DOI: 10.1080/15548627.2016.1193656
    [48]
    Liu R X, Xu C L, Zhang W L, et al. FUNDC1-mediated mitophagy and HIF1α activation drives pulmonary hypertension during hypoxia[J]. Cell Death Dis, 2022, 13(7): 634. DOI: 10.1038/s41419-022-05091-2
    [49]
    Zhang Y N, Lian Y J, Lian X L, et al. FUNDC1 mediated mitophagy in epileptic hippocampal neuronal injury induced by Magnesium-Free fluid[J]. Neurochem Res, 2023, 48(1): 284-294. DOI: 10.1007/s11064-022-03749-z
    [50]
    Wang L, Wang P, Dong H, et al. Ulk1/FUNDC1 prevents nerve cells from Hypoxia-Induced apoptosis by promoting cell autophagy[J]. Neurochem Res, 2018, 43(8): 1539-1548. DOI: 10.1007/s11064-018-2568-x
    [51]
    Mao H, Chen W, Chen L X, et al. Potential role of mitochondria-associated endoplasmic reticulum membrane proteins in diseases[J]. Biochem Pharmacol, 2022, 199: 115011. DOI: 10.1016/j.bcp.2022.115011
    [52]
    周曼丽, 冯宇, 钱舒乐, 等. 心肌缺血再灌注损伤潜在治疗靶点-线粒体动力学相关蛋白的研究进展[J]. 中国中药杂志, 2020, 45(17): 4183-4195.

    Zhou M L, Feng Y, Qian S L, et al. Research progress on potential targets-mitochondrial dynamics-related proteins in treatment of myocardial ischemia-reperfusion injury[J]. Chin J Chin Mater Med, 2020, 45(17): 4183-4195.
    [53]
    Chai P Y, Cheng Y R, Hou C Y, et al. USP19 promotes hypoxia-induced mitochondrial division via FUNDC1 at ER-mitochondria contact sites[J]. J Cell Biol, 2021, 220(7): e202010006. DOI: 10.1083/jcb.202010006
    [54]
    Liu B H, Cao Y W, Wang D J, et al. Zhen-Wu-Tang induced mitophagy to protect mitochondrial function in chronic glomerulonephritis via PI3K/AKT/mTOR and AMPK pathways[J]. Front Pharmacol, 2021, 12: 777670. DOI: 10.3389/fphar.2021.777670
    [55]
    Sun W Y, Lei Y T, Jiang Z H, et al. BPA and low-Se exacerbate apoptosis and mitophagy in chicken pancreatic cells by regulating the PTEN/PI3K/AKT/mTOR pathway[J]. J Adv Res, 2025, 67: 61-69. DOI: 10.1016/j.jare.2024.01.029
    [56]
    Kaeberlein M, Galvan V. Rapamycin and Alzheimer's disease: time for a clinical trial?[J]. Sci Transl Med, 2019, 11(476): eaar4289. DOI: 10.1126/scitranslmed.aar4289
    [57]
    Zheng G M, Wang L, Li X Q, et al. Rapamycin alleviates cognitive impairment in murine vascular dementia: the enhancement of mitophagy by PI3K/AKT/mTOR axis[J]. Tissue Cell, 2021, 69: 101481. DOI: 10.1016/j.tice.2020.101481
    [58]
    Wang L, Jiang W Z, Wang J, et al. Puerarin inhibits FUNDC1-mediated mitochondrial autophagy and CSE-induced apoptosis of human bronchial epithelial cells by activating the PI3K/AKT/mTOR signaling pathway[J]. Aging (Albany NY), 2022, 14(3): 1253-1264.
    [59]
    Hung C M, Lombardo P S, Malik N, et al. AMPK/ULK1-mediated phosphorylation of Parkin ACT domain mediates an early step in mitophagy[J]. Sci Adv, 2021, 7(15): eabg4544. DOI: 10.1126/sciadv.abg4544
    [60]
    Guo Y Q, Jiang H F, Wang M, et al. Metformin alleviates cerebral ischemia/reperfusion injury aggravated by hyperglycemia via regulating AMPK/ULK1/PINK1/Parkin pathway-mediated mitophagy and apoptosis[J]. Chem Biol Interact, 2023, 384: 110723. DOI: 10.1016/j.cbi.2023.110723
    [61]
    Cai Y, Yang E Y, Yao X H, et al. FUNDC1-dependent mitophagy induced by tPA protects neurons against cerebral ischemia-reperfusion injury[J]. Redox Biol, 2021, 38: 101792. DOI: 10.1016/j.redox.2020.101792
    [62]
    Castellazzi M, Patergnani S, Donadio M, et al. Autophagy and mitophagy biomarkers are reduced in sera of patients with Alzheimer's disease and mild cognitive impairment[J]. Sci Rep, 2019, 9(1): 20009. DOI: 10.1038/s41598-019-56614-5
    [63]
    Hu Z W, Wen T S, Hu K, et al. Transcutaneous electrical acupoint stimulation ameliorates cognitive function through PINK1/Parkin mediated mitophagy in VD rats[J]. Evid Based Complement Alternat Med, 2022, 2022: 2810794.
    [64]
    Zhao Z T, Xie L, Shi J Y, et al. Neuroprotective effect of Zishen Huoxue decoction treatment on vascular dementia by activating PINK1/Parkin mediated mitophagy in the hippocampal CA1 region[J]. J Ethnopharmacol, 2024, 319(Pt 1): 117172.
    [65]
    Jiao K Y, Lai Z L, Cheng Q C, et al. Glycosides of Buyang Huanwu decoction inhibits inflammation associated with cerebral ischemia-reperfusion via the PINK1/Parkin mitophagy pathway[J]. J Ethnopharmacol, 2024, 325: 117766. DOI: 10.1016/j.jep.2024.117766
    [66]
    Mao Z G, Tian L Y, Liu J, et al. Ligustilide ameliorates hippocampal neuronal injury after cerebral ischemia reperfusion through activating PINK1/Parkin-dependent mitophagy[J]. Phytomedicine, 2022, 101: 154111. DOI: 10.1016/j.phymed.2022.154111
    [67]
    Yang L, Tao Y W, Luo L L, et al. Dengzhan Xixin injection derived from a traditional Chinese herb erigeron breviscapus ameliorates cerebral ischemia/reperfusion injury in rats via modulation of mitophagy and mitochondrial apoptosis[J]. J Ethnopharmacol, 2022, 288: 114988. DOI: 10.1016/j.jep.2022.114988
    [68]
    Wang W W, Xu J P. Curcumin attenuates cerebral ischemia-reperfusion injury through regulating mitophagy and preserving mitochondrial function[J]. Curr Neurovasc Res, 2020, 17(2): 113-122. DOI: 10.2174/1567202617666200225122620
    [69]
    Tian Z M, Ji X M, Liu J. Neuroinflammation in vascular cognitive impairment and dementia: current evidence, advances, and prospects[J]. Int J Mol Sci, 2022, 23(11): 6224. DOI: 10.3390/ijms23116224
    [70]
    荣幸, 李育, 岳远佳, 等. 红景天苷调节BNIP3介导的线粒体自噬通路对脑缺血神经保护的机制研究[J]. 中药材, 2024(9): 2334-2338.

    Rong X, Li Y, Yue Y J, et al. Mechanism of Rhodiola rosea glycoside regulating BNIP3 mediated mitochondrial autophagy pathway for neuroprotection against cerebral ischemia[J]. J Chin Med Mater, 2024(9): 2334-2338.
    [71]
    Wei R H, Song L J, Miao Z Y, et al. Hydroxysafflor yellow a exerts neuroprotective effects via HIF-1α/BNIP3 pathway to activate neuronal autophagy after OGD/R[J]. Cells, 2022, 11(23): 3726. DOI: 10.3390/cells11233726
    [72]
    Xiao Q, Liu H N, Yang C, et al. Bushen-Yizhi formula exerts neuroprotective effect via inhibiting excessive mitophagy in rats with chronic cerebral hypoperfusion[J]. J Ethnopharmacol, 2023, 310: 116326. DOI: 10.1016/j.jep.2023.116326
    [73]
    Gao J X, Yu L, Wang Z, et al. Induction of mitophagy in C2C12 cells by electrical pulse stimulation involves increasing the level of the mitochondrial receptor FUNDC1 through the AMPK-ULK1 pathway[J]. Am J Transl Res, 2020, 12(10): 6879-6894.
    [74]
    Chi Y L, Zhang W L, Yang F, et al. Transcutaneous electrical acupoint stimulation for improving postoperative recovery, reducing stress and inflammatory responses in elderly patient undergoing knee surgery[J]. Am J Chin Med, 2019, 47(7): 1445-1458. DOI: 10.1142/S0192415X19500745
    [75]
    Xiong W, Zhao C M, An L X, et al. Efficacy of acupuncture combined with local anesthesia in ischemic stroke patients with carotid artery stenting: a prospective randomized trial[J]. Chin J Integr Med, 2020, 26(8): 609-616. DOI: 10.1007/s11655-019-3174-8
    [76]
    Tan Z X, Dong F, Wu L Y, et al. Transcutaneous electrical nerve stimulation (TENS) alleviates brain ischemic injury by regulating neuronal oxidative stress, pyroptosis, and mitophagy[J]. Mediators Inflamm, 2023, 2023: 5677865.
    [77]
    Su S H, Wu Y F, Wang D P, et al. Inhibition of excessive autophagy and mitophagy mediates neuroprotective effects of URB597 against chronic cerebral hypoperfusion[J]. Cell Death Dis, 2018, 9(7): 733. DOI: 10.1038/s41419-018-0755-y
    [78]
    Su S H, Wu Y F, Lin Q, et al. URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion[J]. J Neuroinflammation, 2019, 16(1): 260. DOI: 10.1186/s12974-019-1668-0
    [79]
    Chen Y Y, Wei G, Feng X J, et al. Dexmedetomidine enhances Mitophagy via PINK1 to alleviate hippocampal neuronal Pyroptosis and improve postoperative cognitive dysfunction in elderly rat[J]. Exp Neurol, 2024, 379: 114842. DOI: 10.1016/j.expneurol.2024.114842
    [80]
    Shi Y, Fang Q, Hu Y, et al. Melatonin ameliorates post-stroke cognitive impairment in mice by inhibiting excessive mitophagy[J]. Cells, 2024, 13(10): 872. DOI: 10.3390/cells13100872
  • Related Articles

    [1]OU Minjie, DENG Jianhua, ZHENG Guoyang, WEN Jin. Research in Robot-assisted Surgery for Pheochromocytoma and Paraganglioma[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1401-1407. DOI: 10.12290/xhyxzz.2023-0555
    [2]LIU Yandong, DENG Qiang, ZHANG Yanjun, LI Zhongfeng, PENG Randong, GUO Tiefeng, WANG Yurong, CHEN Bo. Research Progress on Emerging Signaling Pathways Related to Muscle Bone Symbiosis[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 147-152. DOI: 10.12290/xhyxzz.2023-0277
    [3]QIANG Jiaqi, HUANG Jiuzuo, TANG Xin, PAN Hui, LONG Xiao, CHEN Shi. Applications of Three-dimensional Facial Features in Disease Diagnosis and Treatment[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0717
    [4]WANG Caihong, LIU Rongxin, TANG Feng, WEI Xiaotao, XU Ziqing, HOU Huaijing, ZHANG Jie, ZHAO Yongqiang, XUE Jianjun. Research Progress on the Role of NLRP3 Inflammasome and Microglia in Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1282-1288. DOI: 10.12290/xhyxzz.2023-0217
    [5]WU Liyi, YAN Weigang. Research Progress of Prostate Cancer Somatic Mutation and Treatment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 839-843. DOI: 10.12290/xhyxzz.2022-0717
    [6]SU Pengfei, YU Jianchun. Progress in the Research on the Role of Tumor-associated Macrophages in Drug-resistance and Treatment of Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 480-486. DOI: 10.12290/xhyxzz.2021-0605
    [7]YANG Jingyi, XU Qianyue, YU Hong. Research Progress on Pathogenesis and Treatment of Juvenile Localized Scleroderma[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 110-116. DOI: 10.12290/xhyxzz.2021-0178
    [8]WANG Yanqing, CHEN Yeye, HUANG Cheng, GUO Feng, ZHANG Ye, ZHANG Jieshi, GUO Chao, WANG Guige, LI Shanqing. Progress in the Diagnosis and Treatment of Pulmonary Carcinoids[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 366-372. DOI: 10.3969/j.issn.1674-9081.2020.00.006
    [9]Wen-hui WEN, Ze-min KUANG, Yue WU, Xu WANG, Wen-feng WU, Lü-ya WANG. Progress in the Diagnosis and Treatment of Homozygous Familial Hypercholesterolemia[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(4): 387-392. DOI: 10.3969/j.issn.1674-9081.2019.04.015

Catalog

    Article Metrics

    Article views (52) PDF downloads (6) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close