Citation: | SONG Shujia, SUN Chen, PEI Lijian, XU Weihai, HUANG Yuguang. Progress in Diagnosis and Treatment of Central Post-stroke Pain[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 265-271. DOI: 10.12290/xhyxzz.2023-0591 |
[1] |
Klit H, Finnerup N B, Jensen T S. Central post-stroke pain: clinical characteristics, pathophysiology, and management[J]. Lancet Neurol, 2009, 8(9): 857-868. DOI: 10.1016/S1474-4422(09)70176-0
|
[2] |
Treede R D, Jensen T S, Campbell J N, et al. Neuropathic pain: redefinition and a grading system for clinical and research purposes[J]. Neurology, 2008, 70(18): 1630-1635. DOI: 10.1212/01.wnl.0000282763.29778.59
|
[3] |
De Smet Y. The thalamic syndrome of Déjérine-Roussy. Prolegomenon[J]. Rev Neurol (Paris), 1986, 142(4): 259-266.
|
[4] |
Ali M, Tibble H, Brady M C, et al. Prevalence, trajectory, and predictors of poststroke pain: retrospective analysis of pooled clinical trial data set[J]. Stroke, 2023, 54(12): 3107-3116. DOI: 10.1161/STROKEAHA.123.043355
|
[5] |
Naess H, Lunde L, Brogger J. The effects of fatigue, pain, and depression on quality of life in ischemic stroke patients: the Bergen Stroke Study[J]. Vasc Health Risk Manag, 2012, 8: 407-413.
|
[6] |
Liampas A, Velidakis N, Georgiou T, et al. Prevalence and management challenges in central Post-Stroke neuropathic pain: a systematic review and meta-analysis[J]. Adv Ther, 2020, 37(7): 3278-3291. DOI: 10.1007/s12325-020-01388-w
|
[7] |
Grönberg A, Henriksson I, Stenman M, et al. Incidence of aphasia in ischemic stroke[J]. Neuroepidemiology, 2022, 56(3): 174-182. DOI: 10.1159/000524206
|
[8] |
Nesbitt J, Moxham S, Ramadurai G, et al. Improving pain assessment and managment in stroke patients[J]. BMJ Qual Improv Rep, 2015, 4(1): u203375. w3105. DOI: 10.1136/bmjquality.u203375.w3105
|
[9] |
Saadé N E, Jabbur S J. Nociceptive behavior in animal models for peripheral neuropathy: spinal and supraspinal mechanisms[J]. Prog Neurobiol, 2008, 86(1): 22-47. DOI: 10.1016/j.pneurobio.2008.06.002
|
[10] |
Cheng Y P, Wu B Q, Huang J J, et al. Research progress on the mechanisms of central Post-Stroke pain: a review[J]. Cell Mol Neurobiol, 2023, 43(7): 3083-3098. DOI: 10.1007/s10571-023-01360-6
|
[11] |
Mohanan A T, Nithya S, Nomier Y, et al. Stroke-induced central pain: overview of the mechanisms, management, and emerging targets of central post-stroke pain[J]. Pharmaceuticals (Basel), 2023, 16(8): 1103. DOI: 10.3390/ph16081103
|
[12] |
Yam M F, Loh Y C, Tan C S, et al. General pathways of pain sensation and the major neurotransmitters involved in pain regulation[J]. Int J Mol Sci, 2018, 19(8): 2164. DOI: 10.3390/ijms19082164
|
[13] |
Krause T, Brunecker P, Pittl S, et al. Thalamic sensory strokes with and without pain: differences in lesion patterns in the ventral posterior thalamus[J]. J Neurol Neurosurg Psychiatry, 2012, 83(8): 776-784. DOI: 10.1136/jnnp-2011-301936
|
[14] |
Wasserman J K, Koeberle P D. Development and characterization of a hemorrhagic rat model of central post-stroke pain[J]. Neuroscience, 2009, 161(1): 173-183. DOI: 10.1016/j.neuroscience.2009.03.042
|
[15] |
Treister A K, Hatch M N, Cramer S C, et al. Demystifying poststroke pain: from etiology to treatment[J]. PM R, 2017, 9(1): 63-75. DOI: 10.1016/j.pmrj.2016.05.015
|
[16] |
Morishita T, Inoue T. Brain stimulation therapy for central post-stroke pain from a perspective of interhemispheric neural network remodeling[J]. Front Hum Neurosci, 2016, 10: 166.
|
[17] |
Betancur D F A, Tarragó M D G L, Torres I L D S, et al. Central post-stroke pain: an integrative review of somatotopic damage, clinical symptoms, and neurophysiological measures[J]. Front Neurol, 2021, 12: 678198. DOI: 10.3389/fneur.2021.678198
|
[18] |
Gritsch S, Bali K K, Kuner R, et al. Functional characterization of a mouse model for central post-stroke pain[J]. Mol Pain, 2016, 12: 1744806916629049. http://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=10480625
|
[19] |
Di Virgilio F, Dal Ben D, Sarti A C, et al. The P2X7 receptor in infection and inflammation[J]. Immunity, 2017, 47(1): 15-31. DOI: 10.1016/j.immuni.2017.06.020
|
[20] |
Wan L, Li Z F, Liu T T, et al. Epoxyeicosatrienoic acids: Emerging therapeutic agents for central post-stroke pain[J]. Pharmacol Res, 2020, 159: 104923. DOI: 10.1016/j.phrs.2020.104923
|
[21] |
Kuan Y H, Shih H C, Tang S C, et al. Targeting P(2)X(7) receptor for the treatment of central post-stroke pain in a rodent model[J]. Neurobiol Dis, 2015, 78: 134-145. DOI: 10.1016/j.nbd.2015.02.028
|
[22] |
Shih H C, Kuan Y H, Shyu B C. Targeting brain-derived neurotrophic factor in the medial thalamus for the treatment of central poststroke pain in a rodent model[J]. Pain, 2017, 158(7): 1302-1313. DOI: 10.1097/j.pain.0000000000000915
|
[23] |
Yang F, Luo W J, Sun W, et al. SDF1-CXCR4 signaling maintains central post-stroke pain through mediation of glial-neuronal interactions[J]. Front Mol Neurosci, 2017, 10: 226. DOI: 10.3389/fnmol.2017.00226
|
[24] |
Huang T F, Fu G L, Gao J, et al. Fgr contributes to hemorrhage-induced thalamic pain by activating NF-κB/ERK1/2 pathways[J]. JCI Insight, 2020, 5(20): e139987. DOI: 10.1172/jci.insight.139987
|
[25] |
Li H L, Lin M, Tan X P, et al. Role of sensory pathway injury in central post-stroke pain: a narrative review of its patho-genetic mechanism[J]. J Pain Res, 2023, 16: 1333-1343. DOI: 10.2147/JPR.S399258
|
[26] |
Matsuura W, Harada S, Liu K Y, et al. Evidence of a role for spinal HMGB1 in ischemic stress-induced mechanical allodynia in mice[J]. Brain Res, 2018, 1687: 1-10. DOI: 10.1016/j.brainres.2018.02.026
|
[27] |
Matsuura W, Nakamoto K, Tokuyama S. The involvement of DDAH1 in the activation of spinal NOS signaling in early stage of mechanical allodynia induced by exposure to ischemic stress in mice[J]. Biol Pharm Bull, 2019, 42(9): 1569-1574. DOI: 10.1248/bpb.b19-00371
|
[28] |
Harada S, Matsuura W, Takano M, et al. Proteomic profil-ing in the spinal cord and sciatic nerve in a global cerebral Ischemia-Induced mechanical allodynia mouse model[J]. Biol Pharm Bull, 2016, 39(2): 230-238. DOI: 10.1248/bpb.b15-00647
|
[29] |
Wang G X, Thompson S M. Maladaptive homeostatic plasticity in a rodent model of central pain syndrome: thalamic hyperexcitability after spinothalamic tract lesions[J]. J Neurosci, 2008, 28(46): 11959-11969. DOI: 10.1523/JNEUROSCI.3296-08.2008
|
[30] |
Willoch F, Schindler F, Wester H J, et al. Central poststroke pain and reduced opioid receptor binding within pain processing circuitries: a [11C]diprenorphine PET study[J]. Pain, 2004, 108(3): 213-220. DOI: 10.1016/j.pain.2003.08.014
|
[31] |
Krause T, Asseyer S, Taskin B, et al. The cortical signature of central poststroke pain: gray matter decreases in somatosensory, insular, and prefrontal cortices[J]. Cereb Cortex, 2016, 26(1): 80-88. DOI: 10.1093/cercor/bhu177
|
[32] |
Helmchen C, Lindig M, Petersen D, et al. Disappearance of central thalamic pain syndrome after contralateral parietal lobe lesion: implications for therapeutic brain stimulation[J]. Pain, 2002, 98(3): 325-330. DOI: 10.1016/S0304-3959(02)00139-2
|
[33] |
Choi H R, Aktas A, Bottros M M. Pharmacotherapy to manage central post-stroke pain[J]. CNS Drugs, 2021, 35(2): 151-160. DOI: 10.1007/s40263-021-00791-3
|
[34] |
Flaster M, Meresh E, Rao M, et al. Central poststroke pain: current diagnosis and treatment[J]. Top Stroke Rehabil, 2013, 20(2): 116-123. DOI: 10.1310/tsr2002-116
|
[35] |
Hesami O, Gharagozli K, Beladimoghadam N, et al. The efficacy of gabapentin in patients with central post-stroke pain[J]. Iran J Pharm Res, 2015, 14(Suppl): 95-101.
|
[36] |
Serpell M G. Gabapentin in neuropathic pain syndromes: a randomised, double-blind, placebo-controlled trial[J]. Pain, 2002, 99(3): 557-566. DOI: 10.1016/S0304-3959(02)00255-5
|
[37] |
Radiansyah R S, Hadi D W. Repetitive transcranial magnetic stimulation in central post-stroke pain: current status and future perspective[J]. Korean J Pain, 2023, 36(4): 408-424. DOI: 10.3344/kjp.23220
|
[38] |
Ohn S H, Chang W H, Park C H, et al. Neural correlates of the antinociceptive effects of repetitive transcranial magnetic stimulation on central pain after stroke[J]. Neurorehabil Neural Repair, 2012, 26(4): 344-352. DOI: 10.1177/1545968311423110
|
[39] |
Leung A, Donohue M, Xu R H, et al. rTMS for suppressing neuropathic pain: a meta-analysis[J]. J Pain, 2009, 10(12): 1205-1216. DOI: 10.1016/j.jpain.2009.03.010
|
[40] |
Pan L J, Zhu H Q, Zhang X A, et al. The mechanism and effect of repetitive transcranial magnetic stimulation for post-stroke pain[J]. Front Mol Neurosci, 2022, 15: 1091402.
|
[41] |
Yang S, Chang M C. Effect of repetitive transcranial magnetic stimulation on pain management: a systematic narrative review[J]. Front Neurol, 2020, 11: 114. DOI: 10.3389/fneur.2020.00114
|
[42] |
Ramger B C, Bader K A, Davies S P, et al. Effects of non-invasive brain stimulation on clinical pain intensity and experimental pain sensitivity among individuals with central post-stroke pain: a systematic review[J]. J Pain Res, 2019, 12: 3319-3329. DOI: 10.2147/JPR.S216081
|
[43] |
Baik J S, Yang J H, Ko S H, et al. Exploring the potential of transcranial direct current stimulation for relieving central post-stroke pain: a randomized controlled pilot study[J]. Life (Basel), 2023, 13(5): 1172.
|
[44] |
David M C M M, Moraes A A D, Costa M L D, et al. Transcranial direct current stimulation in the modulation of neuropathic pain: a systematic review[J]. Neurol Res, 2018, 40(7): 555-563.
|
[45] |
Lempka S F, Malone D A, Jr, Hu B, et al. Randomized clinical trial of deep brain stimulation for poststroke pain[J]. Ann Neurol, 2017, 81(5): 653-663. DOI: 10.1002/ana.24927
|
[46] |
Boccard S G J, Prangnell S J, Pycroft L, et al. Long-term results of deep brain stimulation of the anterior cingulate cortex for neuropathic pain[J]. World Neurosurg, 2017, 106: 625-637. DOI: 10.1016/j.wneu.2017.06.173
|
1. |
袁佳琳,王慧娟,刘晓慧,王丽君,陈苗苗. 急性脑卒中患者疲劳相关症状群的网络分析. 军事护理. 2025(03): 57-61 .
![]() | |
2. |
傅佳,冯富媛,欧册华,廖常莉. 中枢卒中后疼痛的神经机制与临床管理策略. 西南医科大学学报. 2024(06): 553-558 .
![]() |