Volume 14 Issue 3
May  2023
Turn off MathJax
Article Contents
SONG Shujia, PEI Lijian, XU Yan, ZHANG Xue, HUANG Yuguang. Research Progress on the Animal Models of Neuromyelitis Optica Spectrum Disorders-related Neuropathic Pain[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 598-602. doi: 10.12290/xhyxzz.2022-0647
Citation: SONG Shujia, PEI Lijian, XU Yan, ZHANG Xue, HUANG Yuguang. Research Progress on the Animal Models of Neuromyelitis Optica Spectrum Disorders-related Neuropathic Pain[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 598-602. doi: 10.12290/xhyxzz.2022-0647

Research Progress on the Animal Models of Neuromyelitis Optica Spectrum Disorders-related Neuropathic Pain

doi: 10.12290/xhyxzz.2022-0647
Funds:

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-006

Fundamental Research Funds for the Central Universities 3332021015

More Information
  • Corresponding author: HUANG Yuguang, E-mail: garypumch@163.com
  • Received Date: 2022-11-14
  • Accepted Date: 2022-12-12
  • Available Online: 2023-01-30
  • Publish Date: 2023-05-30
  • Neuromyelitis optica spectrum disorders(NMOSD), an inflammatory demyelinating disease of central nervous system, is characterized by optic neuritis, longitudinally extensive transverse myelitis, and neuropathic pain. Given the lack of mature animal models, the mechanism of neuropathic pain in NMOSD is still unclear, although some studies have reported neuropathic pain in NMOSD models. It is therefore necessary to build a reliable and feasible animal model of NMOSD related neuropathic pain, in order to provide scientific support for the mechanism and the mining of therapeutic targets. This article reviews the research progress of the establishment of NMOSD-related neuropathic pain animal models and their applications, and provides a reference for the establishment of ideal NMOSD neuropathic pain animal models.
  • loading
  • [1] Wingerchuk DM, Banwell B, Bennett JL, et al. Interna-tional consensus diagnostic criteria for neuromyelitis optica spectrum disorders[J]. Neurology, 2015, 85: 177-189. doi:  10.1212/WNL.0000000000001729
    [2] Lucchinetti CF, Guo Y, Popescu BF, et al. The pathology of an autoimmune astrocytopathy: lessons learned from neuromyelitis optica[J]. Brain Pathol, 2014, 24: 83-97. doi:  10.1111/bpa.12099
    [3] Asseyer S, Cooper G, Paul F. Pain in NMOSD and MOGAD: A Systematic Literature Review of Pathophysiology, Symptoms, and Current Treatment Strategies[J]. Front Neurol, 2020, 11: 778. doi:  10.3389/fneur.2020.00778
    [4] Ayzenberg I, Richter D, Henke E, et al. Pain, Depression, and Quality of Life in Neuromyelitis Optica Spectrum Disorder: A Cross-Sectional Study of 166 AQP4 Antibody-Seropositive Patients[J]. Neurol Neuroimmunol Neuroinflamm, 2021, 8: e985. doi:  10.1212/NXI.0000000000000985
    [5] Kanamori Y, Nakashima I, Takai Y, et al. Pain in neuromyelitis optica and its effect on quality of life: a cross-sectional study[J]. Neurology, 2011, 77: 652-658. doi:  10.1212/WNL.0b013e318229e694
    [6] Qian P, Lancia S, Alvarez E, et al. Association of neuromyelitis optica with severe and intractable pain[J]. Arch Neurol, 2012, 69: 1482-1487. doi:  10.1001/archneurol.2012.768
    [7] Zhao S, Mutch K, Elsone L, et al. Neuropathic pain in neuromyelitis optica affects activities of daily living and quality of life[J]. Mult Scler, 2014, 20: 1658-1661. doi:  10.1177/1352458514522103
    [8] Zhang X, Xu Y, Pei LJ. Review of Neuromyelitis Optica Spectrum Disorder with Pain-Depression Comorbidity[J]. Chin Med Sci J, 2021, 36: 316-322.
    [9] Asseyer S, Cooper G, Paul F. Pain in NMOSD and MOGAD: A Systematic Literature Review of Pathophysiology, Symptoms, and Current Treatment Strategies[J]. Front Neurol, 2020, 11: 778. doi:  10.3389/fneur.2020.00778
    [10] Zhang X, Pei L, Xu Y, et al. Factors correlated with neuropathic pain in patients with neuromyelitis optica spectrum disorder[J]. Mult Scler Relat Disord, 2022, 68: 104213. doi:  10.1016/j.msard.2022.104213
    [11] Li X, Xu H, Zheng Z, et al. The risk factors of neuropathic pain in neuromyelitis optica spectrum disorder: a retrospective case-cohort study[J]. BMC Neurology, 2022, 22: 304. doi:  10.1186/s12883-022-02841-9
    [12] Grace PM, Loram LC, Christianson JP, et al. Behavioral assessment of neuropathic pain, fatigue, and anxiety in experimental autoimmune encephalomyelitis (EAE) and attenuation by interleukin-10 gene therapy[J]. Brain Behav Immun, 2017, 59: 49-54. doi:  10.1016/j.bbi.2016.05.012
    [13] Khan N, Woodruff TM, Smith MT. Establishment and characterization of an optimized mouse model of multiple sclerosis-induced neuropathic pain using behavioral, pharmacologic, histologic and immunohistochemical methods[J]. Pharmacol Biochem Behav, 2014, 126: 13-27. doi:  10.1016/j.pbb.2014.09.003
    [14] Kwilasz AJ, Green Fulgham SM, Duran-Malle JC, et al. Toll-like receptor 2 and 4 antagonism for the treatment of experimental autoimmune encephalomyelitis (EAE)-related pain[J]. Brain Behav Immun, 2021, 93: 80-95. doi:  10.1016/j.bbi.2020.12.016
    [15] Iwamoto S, Itokazu T, Sasaki A, et al. RGMa Signal in Macrophages Induces Neutrophil-Related Astrocytopathy in NMO[J]. Ann Neurol, 2022, 91: 532-547. doi:  10.1002/ana.26327
    [16] Kurosawa K, Misu T, Takai Y, et al. Severely exacerbated neuromyelitis optica rat model with extensive astrocytopathy by high affinity anti-aquaporin-4 monoclonal antibody[J]. Acta Neuropathol Commun, 2015, 3: 82. doi:  10.1186/s40478-015-0259-2
    [17] Hillebrand S, Schanda K, Nigritinou M, et al. Circulating AQP4-specific ao-antibodies alone can induce neuromyelitis optica spectrum disorder in the rat[J]. Acta Neuropathol, 2019, 137: 467-485. doi:  10.1007/s00401-018-1950-8
    [18] Chan KH, Zhang R, Kwan JSC, et al. Aquaporin-4 autoantibodies cause asymptomatic aquaporin-4 loss and activate astrocytes in mouse[J]. J Neuroimmunol, 2012, 245: 32-38. doi:  10.1016/j.jneuroim.2012.02.001
    [19] Kinoshita M, Nakatsuji Y, Kimura T, et al. Neuromyelitis optica: Passive transfer to rats by human immunoglobulin[J]. Biochem Biophys Res Commun, 2009, 386: 623-627. doi:  10.1016/j.bbrc.2009.06.085
    [20] Saini H, Rifkin R, Gorelik M, et al. Passively transferred human NMO-IgG exacerbates demyelination in mouse experimental autoimmune encephalomyelitis[J]. BMC Neurol, 2013, 13: 104. doi:  10.1186/1471-2377-13-104
    [21] Luo J, Xie C, Zhang W, et al. Experimental mouse model of NMOSD produced by facilitated brain delivery of NMO-IgG by microbubble-enhanced low-frequency ultrasound in experimental allergic encephalomyelitis mice[J]. Mult Scler Relat Disord, 2020, 46: 102473. doi:  10.1016/j.msard.2020.102473
    [22] Xiang W, Xie C, Luo J, et al. Low Frequency Ultrasound With Injection of NMO-IgG and Complement Produces Lesions Different From Experimental Autoimmune Encephalomyelitis Mice[J]. Front Immunol, 2021, 12: 727750. doi:  10.3389/fimmu.2021.727750
    [23] Ishikura T, Kinoshita M, Shimizu M, et al. Anti-AQP4 autoantibodies promote ATP release from astrocytes and induce mechanical pain in rats[J]. J Neuroinflammation, 2021, 18: 181. doi:  10.1186/s12974-021-02232-w
    [24] Saadoun S, Waters P, Bell BA, et al. Intra-cerebral injection of neuromyelitis optica immunoglobulin G and human complement produces neuromyelitis optica lesions in mice[J]. Brain, 2010, 133: 349-361. doi:  10.1093/brain/awp309
    [25] Lee CL, Wang KC, Chen SJ, et al. Repetitive intrathecal injection of human NMO-IgG with complement exacerbates disease severity with NMO pathology in experimental allergic encephalomyelitis mice[J]. Mult Scler Relat Disord, 2019, 30: 225-230. doi:  10.1016/j.msard.2019.02.025
    [26] Zhang H, Verkman AS. Longitudinally extensive NMO spinal cord pathology produced by passive transfer of NMO-IgG in mice lacking complement inhibitor CD59[J]. J Autoimmun, 2014, 53: 67-77. doi:  10.1016/j.jaut.2014.02.011
    [27] Asavapanumas N, Ratelade J, Verkman AS. Unique neuromyelitis optica pathology produced in naïve rats by intracerebral administration of NMO-IgG [J]. Acta Neuropathol, 2014, 127: 539-551. doi:  10.1007/s00401-013-1204-8
    [28] Marignier R, Ruiza, Cavagna S, et al. Neuromyelitis optica study model based on chronic infusion of autoantibodies in rat cerebrospinal fluid[J]. J Neuroinflammation, 2016, 13: 111. doi:  10.1186/s12974-016-0577-8
    [29] Harada K, Fujita Y, Okuno T, et al. Inhibition of RGMa alleviates symptoms in a rat model of neuromyelitis optica[J]. Sci Rep, 2018, 8: 34. doi:  10.1038/s41598-017-18362-2
    [30] Geis C, Ritter C, Ruschil C, et al. The intrinsic pathogenic role of autoantibodies to aquaporin 4 mediating spinal cord disease in a rat passive-transfer model[J]. Exp Neurol, 2015, 265: 8-21. doi:  10.1016/j.expneurol.2014.12.015
    [31] Zeka B, Hastermann M, Hochmeister S, et al. Highly encephalitogenic aquaporin 4-specific T cells and NMO-IgG jointly orchestrate lesion location and tissue damage in the CNS[J]. Acta Neuropathol, 2015, 130: 783-798. doi:  10.1007/s00401-015-1501-5
    [32] Matsumoto Y, Kanamori A, Nakamura M, et al. Sera from patients with seropositive neuromyelitis optica spectral disorders caused the degeneration of rodent optic nerve[J]. Exp Eye Res, 2014, 119: 61-69. doi:  10.1016/j.exer.2013.12.010
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (310) PDF downloads(102) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return