Citation: | ZHANG Zijiao, DING Shunjing, ZHAO Di, LIANG Jun, LEI Jianbo. Clinical Prediction Models Based on Traditional Methods and Machine Learning for Predicting First Stroke: Status and Prospects[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 292-299. DOI: 10.12290/xhyxzz.2024-1116 |
Stroke ranks as the third leading cause of death and the fourth leading cause of disability worldwide. Its high disability rate and prolonged recovery period not only severely impact patients' quality of life but also impose a significant burden on families and society. Primary prevention is the cornerstone of stroke control, as early intervention on risk factors can effectively reduce its incidence. Therefore, the development of predictive models for first-ever stroke risk holds substantial clinical value. In recent years, advancements in big data and artificial intelligence technologies have opened new avenues for stroke risk prediction. This article reviews the current research status of traditional methods and machine learning models in predicting first-ever stroke risk and outlines future development trends from three perspectives: First, emphasis should be placed on technological innovation by incorporating advanced algorithms such as deep learning and large models to further enhance the accuracy of predictive models. Second, there is a need to diversify data types and optimize model architectures to construct more comprehensive and precise predictive models. Lastly, particular attention should be given to the clinical validation of models in real-world settings. This not only enhances the robustness and generalizability of the models but also promotes physicians' understanding of predictive models, which is crucial for their application and dissemination.
[1] |
GBD 2021 Stroke Risk Factor Collaborators. Global, regional, and national burden of stroke and its risk factors, 1990-2021: a systematic analysis for the Global Burden of Disease Study 2021[J]. Lancet Neurol, 2024, 23(10): 973-1003. DOI: 10.1016/S1474-4422(24)00369-7
|
[2] |
Owolabi M O, Thrift A G, Mahal A, et al. Primary stroke prevention worldwide: translating evidence into action[J]. Lancet Public Health, 2022, 7(1): e74-e85. DOI: 10.1016/S2468-2667(21)00230-9
|
[3] |
Crichton S L, Bray B D, McKevitt C, et al. Patient outcomes up to 15 years after stroke: survival, disability, quality of life, cognition and mental health[J]. J Neurol Neurosurg Psychiatry, 2016, 87(10): 1091-1098. DOI: 10.1136/jnnp-2016-313361
|
[4] |
Feigin V L, Owolabi M O. Pragmatic solutions to reduce the global burden of stroke: a World Stroke Organization-Lancet Neurology Commission[J]. Lancet Neurol, 2023, 22(12): 1160-1206.
|
[5] |
Sarikaya H, Ferro J, Arnold M. Stroke prevention--medical and lifestyle measures[J]. Eur Neurol, 2015, 73(3/4): 150-157. http://www.karger.com/Article/FullText/367652
|
[6] |
Goldstein L B, Bushnell C D, Adams R J, et al. Guidelines for the primary prevention of stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association[J]. Stroke, 2011, 42(2): 517-584. DOI: 10.1161/STR.0b013e3181fcb238
|
[7] |
胡填, 岑晚霞, 李翠, 等. 临床预测模型在脑卒中的应用与研究进展[J]. 中国临床研究, 2023, 36(3): 386-390.
Hu T, Cen W X, Li C, et al. Application and research progress of clinical prediction model in stroke[J]. Chin J Clin Res, 2023, 36(3): 386-390.
|
[8] |
Deo R C. Machine learning in medicine[J]. Circulation, 2015, 132(20): 1920-1930. DOI: 10.1161/CIRCULATIONAHA.115.001593
|
[9] |
Wolf P A, D'Agostino R B, Belanger A J, et al. Probability of stroke: a risk profile from the Framingham Study[J]. Stroke, 1991, 22(3): 312-318. DOI: 10.1161/01.STR.22.3.312
|
[10] |
Dufouil C, Beiser A, McLure L A, et al. Revised framingham stroke risk profile to reflect temporal trends[J]. Circulation, 2017, 135(12): 1145-1159. DOI: 10.1161/CIRCULATIONAHA.115.021275
|
[11] |
Parmar P, Krishnamurthi R, Ikram M A, et al. The Stroke Riskometer(TM) App: validation of a data collection tool and stroke risk predictor[J]. Int J Stroke, 2015, 10(2): 231-244. DOI: 10.1111/ijs.12411
|
[12] |
Gage B F, Waterman A D, Shannon W, et al. Validation of clinical classification schemes for predicting stroke: results from the National Registry of Atrial Fibrillation[J]. JAMA, 2001, 285(22): 2864-2870. DOI: 10.1001/jama.285.22.2864
|
[13] |
Lip G Y H, Nieuwlaat R, Pisters R, et al. Refining clinical risk stratification for predicting stroke and thromboembolism in atrial fibrillation using a novel risk factor-based approach: the Euro heart survey on atrial fibrillation[J]. Chest, 2010, 137(2): 263-272. DOI: 10.1378/chest.09-1584
|
[14] |
Hippisley-Cox J, Coupland C, Brindle P. Derivation and validation of QStroke score for predicting risk of ischaemic stroke in primary care and comparison with other risk scores: a prospective open cohort study[J]. BMJ, 2013, 346: f2573. DOI: 10.1136/bmj.f2573
|
[15] |
Goff D C Jr, Lloyd-Jones D M, Bennett G, et al. 2013 ACC/AHA guideline on the assessment of cardiovascular risk: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines[J]. Circulation, 2014, 129(25 Suppl 2): S49-S73.
|
[16] |
Xing X L, Yang X L, Liu F C, et al. Predicting 10-year and lifetime stroke risk in Chinese population[J]. Stroke, 2019, 50(9): 2371-2378. DOI: 10.1161/STROKEAHA.119.025553
|
[17] |
Grundy S M, D'Agostino R B Sr, Mosca L, et al. Cardiovascular risk assessment based on US cohort studies: findings from a National Heart, Lung, and Blood institute workshop[J]. Circulation, 2001, 104(4): 491-496. DOI: 10.1161/01.CIR.104.4.491
|
[18] |
Chun M, Clarke R, Zhu T T, et al. Development, validation and comparison of multivariable risk scores for prediction of total stroke and stroke types in Chinese adults: a prospective study of 0.5 million adults[J]. Stroke Vasc Neurol, 2022, 7(4): 328-336. DOI: 10.1136/svn-2021-001251
|
[19] |
Zhang Y L, Fang X H, Guan S C, et al. Validation of 10-year stroke prediction scores in a community-based cohort of Chinese older adults[J]. Front Neurol, 2020, 11: 986. http://www.socolar.com/Article/Index?aid=100084717716&jid=100000009585
|
[20] |
Daidone M, Ferrantelli S, Tuttolomondo A. Machine learning applications in stroke medicine: advancements, challenges, and future prospectives[J]. Neural Regen Res, 2024, 19(4): 769-773. http://www.zhangqiaokeyan.com/academic-journal-cn_chinese-nerve-regeneration-research-english-version_thesis/02012101895978.html
|
[21] |
Obermeyer Z, Emanuel E J. Predicting the future-big data, machine learning, and clinical medicine[J]. N Engl J Med, 2016, 375(13): 1216-1219. DOI: 10.1056/NEJMp1606181
|
[22] |
王柳丁. 基于机器学习的病证结合脑卒中风险预测模型的开发与验证[D]. 北京: 中国中医科学院, 2023.
Wang L D. Development and validation of an early warming model for new-onset stroke in Chinese populations at high risk of stroke[D]. Beijing: China Academy of Chinese Medical Sciences, 2023.
|
[23] |
孙资金, 吉静, 马重阳, 等. 基于机器学习的中风中医辨证模型的构建与应用[J]. 湖南中医药大学学报, 2023, 43(4): 694-699. DOI: 10.3969/j.issn.1674-070X.2023.04.019
Sun Z J, Ji J, Ma Z Y, et al. Construction and application of stroke TCM pattern differentiation model based on machine learning[J]. J Hunan Univ Chin Med, 2023, 43(4): 694-699. DOI: 10.3969/j.issn.1674-070X.2023.04.019
|
[24] |
Wang Z L, Jiang M, Hu Y H, et al. An incremental learning method based on probabilistic neural networks and adjustable fuzzy clustering for human activity recognition by using wearable sensors[J]. IEEE Trans Inf Technol Biomed, 2012, 16(4): 691-699. DOI: 10.1109/TITB.2012.2196440
|
[25] |
Shehab M, Abualigah L, Shambour Q, et al. Machine learning in medical applications: a review of state-of-the-art methods[J]. Comput Biol Med, 2022, 145: 105458. DOI: 10.1016/j.compbiomed.2022.105458
|
[26] |
万红燕, 刘婕, 郝舒欣, 等. 基于随机森林算法的南京地区脑卒中风险预测模型构建[J]. 环境卫生学杂志, 2024, 14(7): 590-596.
Wan H Y, Liu J, Hao S X, et al. Construction of a risk prediction model for stroke based on random forest algorithm in Nanjing, China[J]. J Environ Hyg, 2024, 14(7): 590-596.
|
[27] |
Chun M, Clarke R, Cairns B J, et al. Stroke risk prediction using machine learning: a prospective cohort study of 0.5 million Chinese adults[J]. J Am Med Inform Assoc, 2021, 28(8): 1719-1727. DOI: 10.1093/jamia/ocab068
|
[28] |
Qiu Y X, Cheng S Q, Wu Y H, et al. Development of rapid and effective risk prediction models for stroke in the Chinese population: a cross-sectional study[J]. BMJ Open, 2023, 13(3): e068045. DOI: 10.1136/bmjopen-2022-068045
|
[29] |
Chang H W, Zhang H, Shi G P, et al. Ischemic stroke prediction using machine learning in elderly Chinese population: the Rugao Longitudinal Ageing Study[J]. Brain Behav, 2023, 13(12): e3307. DOI: 10.1002/brb3.3307
|
[30] |
Orfanoudaki A, Chesley E, Cadisch C, et al. Machine learning provides evidence that stroke risk is not linear: the non-linear Framingham stroke risk score[J]. PLoS One, 2020, 15(5): e0232414. DOI: 10.1371/journal.pone.0232414
|
[31] |
You J, Guo Y, Kang J J, et al. Development of machine learning-based models to predict 10-year risk of cardiova-scular disease: a prospective cohort study[J]. Stroke Vasc Neurol, 2023, 8(6): 475-485. DOI: 10.1136/svn-2023-002332
|
[32] |
万红燕, 郝舒欣, 刘婕, 等. 机器学习在脑卒中风险预测中的应用进展[J]. 中国基层医药, 2024, 31(8): 1275-1280. DOI: 10.3760/cma.j.cn341190-20231120-00462
Wan H Y, Hao S X, Liu J, et al. Advances in the application of machine learning for stroke risk prediction[J]. Chin J Prim Med Pharm, 2024, 31(8): 1275-1280. DOI: 10.3760/cma.j.cn341190-20231120-00462
|
[33] |
杜慧杰, 刘星雨, 徐明欢, 等. 急性缺血性脑卒中预后预测研究的应用进展: 以机器学习预测模型为例[J]. 中国全科医学, 2025, 28(5): 554-560. DOI: 10.12114/j.issn.1007-9572.2024.0090
Du H J, Liu X Y, Xu M H, et al. Advances in the prognostic prediction of acute ischemic stroke: using machine learning predictive models as an example[J]. Chin Gen Pract, 2025, 28(5): 554-560. DOI: 10.12114/j.issn.1007-9572.2024.0090
|
[34] |
张穿洋, 朱文莉, 李晓冉, 等. 急性脑卒中预后预测模型: 机器学习与传统回归模型的比较[J]. 中国CT和MRI杂志, 2023, 21(7): 24-26.
Zhang C Y, Zhu W L, Li X R, et al. The outcome prediction model of acute stroke: comparison between machine learning and traditional regression model[J]. Chin J CT MRI, 2023, 21(7): 24-26.
|
[35] |
Hong C, Pencina M J, Wojdyla D M, et al. Predictive accuracy of stroke risk prediction models across black and white race, sex, and age groups[J]. JAMA, 2023, 329(4): 306-317. DOI: 10.1001/jama.2022.24683
|
[36] |
Nijman S W, Leeuwenberg A M, Beekers I, et al. Missing data is poorly handled and reported in prediction model studies using machine learning: a literature review[J]. J Clin Epidemiol, 2022, 142: 218-229. DOI: 10.1016/j.jclinepi.2021.11.023
|
[37] |
Janiesch C, Zschech P, Heinrich K. Machine learning and deep learning[J]. Electron Mark, 2021, 31(3): 685-695. DOI: 10.1007/s12525-021-00475-2
|
[38] |
Kamnitsas K, Ledig C, Newcombe V F J, et al. Efficient multi-scale 3D CNN with fully connected CRF for accurate brain lesion segmentation[J]. Med Image Anal, 2017, 36: 61-78. DOI: 10.1016/j.media.2016.10.004
|
[39] |
Shin H C, Roth H R, Gao M C, et al. Deep convolutional neural networks for computer-aided detection: CNN architectures, dataset characteristics and transfer learning[J]. IEEE Trans Med Imaging, 2016, 35(5): 1285-1298. http://www.onacademic.com/detail/journal_1000038688910210_9161.html
|
[40] |
Moulaei K, Afshari L, Moulaei R, et al. Explainable artificial intelligence for stroke prediction through comparison of deep learning and machine learning models[J]. Sci Rep, 2024, 14(1): 31392. DOI: 10.1038/s41598-024-82931-5
|
[41] |
Luo N, Shi W Y, Yang Z Y, et al. Multimodal fusion of brain imaging data: methods and applications[J]. Mach Intell Res, 2024, 21(1): 136-152. http://www.mi-research.net/article/exportPdf?id=7e91c5f9-4816-4be2-9670-ceec939a1ab2
|
[42] |
Colangelo G, Ribo M, Montiel E, et al. PRERISK: a personalized, artificial intelligence-based and statistically-based stroke recurrence predictor for recurrent stroke[J]. Stroke, 2024, 55(5): 1200-1209.
|
[43] |
甄紫伊, 刘蕾, 吴薇, 等. 脑卒中首发风险预测模型的研究进展[J]. 循证护理, 2023, 9(4): 644-647.
Zhen Z Y, Liu L, Wu W, et al. Research progress on risk prediction model of first stroke[J]. Chin Evid Based Nurs, 2023, 9(4): 644-647.
|
[44] |
夏鑫, 牟玮, 李艳芬, 等. 基于机器学习技术挖掘中医名家医案数据的方法探讨[J]. 医学新知, 2024, 34(4): 448-457.
Xia X, Mu W, Li Y F, et al. Approaches to the mining of traditional Chinese medical experts' case histories using machine learning techniques[J]. New Med, 2024, 34(4): 448-457.
|
[45] |
佘楷杰, 袁艿君, 马庆宇, 等. 机器学习驱动中医诊断智能化的发展现状、问题及解决路径[J]. 中国中医基础医学杂志, 2024, 30(3): 398-406.
She K J, Yuan N J, Ma Q Y, et al. The development status, problems, and solutions of machine learning driven intelligence in traditional Chinese medicine diagnosis[J]. J Basic Chin Med, 2024, 30(3): 398-406.
|
[46] |
许明东, 马晓聪, 温宗良, 等. 支持向量机在高血压病中医证候诊断中的应用[J]. 中华中医药杂志, 2017, 32(6): 2497-2500.
Xu M D, Ma X C, Wen Z L, et al. Application of support vector machine in the diagnosis of hypertension in TCM syndrome[J]. China J Tradit Chin Med Pharm, 2017, 32(6): 2497-2500.
|
[47] |
Collins G S, Dhiman P, Ma J, et al. Evaluation of clinical prediction models (part 1): from development to external validation[J]. BMJ, 2024, 384: e074819.
|
[48] |
Riley R D, Archer L, Snell K I E, et al. Evaluation of clinical prediction models (part 2): how to undertake an external validation study[J]. BMJ, 2024, 384: e074820.
|
[49] |
Riley R D, Snell K I E, Archer L, et al. Evaluation of clinical prediction models (part 3): calculating the sample size required for an external validation study[J]. BMJ, 2024, 384: e074821.
|