Citation: | LAI Xinxiu, WANG Xiang. Application Status and Research Advances of Artificial Intelligence in Pancreatobiliary Endoscopy[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 387-393. DOI: 10.12290/xhyxzz.2023-0524 |
[1] |
Choi R Y, Coyner A S, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning[J]. Transl Vis Sci Technol, 2020, 9(2): 14.
|
[2] |
Chan H P, Samala R K, Hadjiiski L M, et al. Deep learning in medical image analysis[J]. Adv Exp Med Biol, 2020, 1213: 3-21.
|
[3] |
Koleth G, Emmanue J, Spadaccini M, et al. Artificial intelligence in gastroenterology: Where are we heading?[J]. Endosc Int Open, 2022, 10(11): E1474-E1480. DOI: 10.1055/a-1907-6569
|
[4] |
LE BERRE C, SANDBORN W J, ARIDHI S, et al. Application of artificial intelligence to gastroenterology and hepatology[J]. Gastroenterology, 2020, 158(1): 76-94.e2. DOI: 10.1053/j.gastro.2019.08.058
|
[5] |
Jovanovic P, Salkic N N, Zerem E. Artificial neural network predicts the need for therapeutic ERCP in patients with suspected choledocholithiasis[J]. Gastrointest Endosc, 2014, 80(2): 260-268. DOI: 10.1016/j.gie.2014.01.023
|
[6] |
Dalai C, Azizian J, Trieu H, et al. Machine learning models compared to existing criteria for noninvasive prediction of endoscopic retrograde cholangiopancreatography-confirmed choledocholithiasis[J]. Liver Res, 2021, 5(4): 224-231. DOI: 10.1016/j.livres.2021.10.001
|
[7] |
Kim T, Kim J, Choi H S, et al. Artificial intelligence-assisted analysis of endoscopic retrograde cholangiopancreatography image for identifying ampulla and difficulty of selective cannulation[J]. Sci Rep, 2021, 11(1): 8381. DOI: 10.1038/s41598-021-87737-3
|
[8] |
Huang L, Lu X Y, Huang X, et al. Intelligent difficulty scoring and assistance system for endoscopic extraction of common bile duct stones based on deep learning: multicenter study[J]. Endoscopy, 2021, 53(5): 491-498. DOI: 10.1055/a-1244-5698
|
[9] |
Bang J Y, Hough M, Hawes R H, et al. Use of artificial intelligence to reduce radiation exposure at fluoroscopy-guided endoscopic procedures[J]. Am J Gastroenterol, 2020, 115(4): 555-561. DOI: 10.14309/ajg.0000000000000565
|
[10] |
Bittner J G 4th, Mellinger J D, Imam T, et al. Face and construct validity of a computer-based virtual reality simulator for ERCP[J]. Gastrointest Endosc, 2010, 71(2): 357-364. DOI: 10.1016/j.gie.2009.08.033
|
[11] |
Kochar B, Akshintala V S, Afghani E, et al. Incidence, severity, and mortality of post-ERCP pancreatitis: a systematic review by using randomized, controlled trials[J]. Gastrointest Endosc, 2015, 81(1): 143-149.e9. DOI: 10.1016/j.gie.2014.06.045
|
[12] |
Saito H, Fujimoto A, Oomoto K, et al. Current approaches and questions yet to be resolved for the prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis[J]. World J Gastrointest Endosc, 2022, 14(11): 657-666. DOI: 10.4253/wjge.v14.i11.657
|
[13] |
Archibugi L, Ciarfaglia G, Cárdenas-Jaén K, et al. Machine learning for the prediction of post-ERCP pancreatitis risk: a proof-of-concept study[J]. Dig Liver Dis, 2023, 55(3): 387-393. DOI: 10.1016/j.dld.2022.10.005
|
[14] |
Zhang X, Yue P, Zhang J D, et al. A novel machine learning model and a public online prediction platform for prediction of post-ERCP-cholecystitis (PEC)[J]. EClinicalMedicine, 2022, 48: 101431. DOI: 10.1016/j.eclinm.2022.101431
|
[15] |
Smith Z L, Mullady D K, Lang G D, et al. A randomized controlled trial evaluating general endotracheal anesthesia versus monitored anesthesia care and the incidence of sedation-related adverse events during ERCP in high-risk patients[J]. Gastrointest Endosc, 2019, 89(4): 855-862. DOI: 10.1016/j.gie.2018.09.001
|
[16] |
Hormati A, Aminnejad R, Saeidi M, et al. Prevalence of anesthetic and gastrointestinal complications of endoscopic retrograde cholangiopancreatography[J]. Anesth Pain Med, 2019, 9(4): e95796.
|
[17] |
Kang H, Lee B, Jo J H, et al. Machine-learning model for the prediction of hypoxaemia during endoscopic retrograde cholangiopancreatography under monitored anaesthesia care[J]. Yonsei Med J, 2023, 64(1): 25-34. DOI: 10.3349/ymj.2022.0381
|
[18] |
Coté G A, Elmunzer B J, Forster E, et al. Development of an automated ERCP Quality Report Card using structured data fields[J]. Tech Innov Gastrointest Endosc, 2021, 23(2): 129-138. DOI: 10.1016/j.tige.2021.01.005
|
[19] |
Imler T D, Sherman S, Imperiale T F, et al. Provider-specific quality measurement for ERCP using natural language processing[J]. Gastrointest Endosc, 2018, 87(1): 164-173.e2. DOI: 10.1016/j.gie.2017.04.030
|
[20] |
Norton I D, Zheng Y, Wiersema M S, et al. Neural network analysis of EUS images to differentiate between pancreatic malignancy and pancreatitis[J]. Gastrointest Endosc, 2001, 54(5): 625-629. DOI: 10.1067/mge.2001.118644
|
[21] |
Zhu M L, Xu C, Yu J G, et al. Differentiation of pancreatic cancer and chronic pancreatitis using computer-aided diagnosis of endoscopic ultrasound (EUS) images: a diagnostic test[J]. PLoS One, 2013, 8(5): e63820. DOI: 10.1371/journal.pone.0063820
|
[22] |
Sǎftoiu A, Vilmann P, Dietrich C F, et al. Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos)[J]. Gastrointest Endosc, 2015, 82(1): 59-69. DOI: 10.1016/j.gie.2014.11.040
|
[23] |
Zhang M M, Yang H, Jin Z D, et al. Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images[J]. Gastrointest Endosc, 2010, 72(5): 978-985. DOI: 10.1016/j.gie.2010.06.042
|
[24] |
Ozkan M, Cakiroglu M, Kocaman O, et al. Age-based computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound images[J]. Endosc Ultrasound, 2016, 5(2): 101-107. DOI: 10.4103/2303-9027.180473
|
[25] |
Marya N B, Powers P D, Chari S T, et al. Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis[J]. Gut, 2021, 70(7): 1335-1344. DOI: 10.1136/gutjnl-2020-322821
|
[26] |
Goyal H, Sherazi S A A, Gupta S, et al. Application of artificial intelligence in diagnosis of pancreatic malignancies by endoscopic ultrasound: a systemic review[J]. Therap Adv Gastroenterol, 2022, 15: 17562848221093873.
|
[27] |
Tonozuka R, Itoi T, Nagata N, et al. Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study[J]. J Hepatobiliary Pancreat Sci, 2021, 28(1): 95-104. DOI: 10.1002/jhbp.825
|
[28] |
Kuwahara T, Hara K, Mizuno N, et al. Usefulness of deep learning analysis for the diagnosis of malignancy in intraduc-tal papillary mucinous neoplasms of the pancreas[J]. Clin Transl Gastroenterol, 2019, 10(5): 1-8.
|
[29] |
Udriştoiu A L, Cazacu I M, Gruionu L G, et al. Real-time computer-aided diagnosis of focal pancreatic masses from endoscopic ultrasound imaging based on a hybrid convolutional and long short-term memory neural network model[J]. PLoS One, 2021, 16(6): e0251701. DOI: 10.1371/journal.pone.0251701
|
[30] |
Jang S I, Kim Y J, Kim E J, et al. Diagnostic performance of endoscopic ultrasound-artificial intelligence using deep learning analysis of gallbladder polypoid lesions[J]. J Gastroenterol Hepatol, 2021, 36(12): 3548-3555. DOI: 10.1111/jgh.15673
|
[31] |
Spadaccini M, Koleth G, Emmanuel J, et al. Enhanced endoscopic ultrasound imaging for pancreatic lesions: The road to artificial intelligence[J]. World J Gastroenterol, 2022, 28(29): 3814-3824. DOI: 10.3748/wjg.v28.i29.3814
|
[32] |
Ishikawa T, Hayakawa M, Suzuki H, et al. Development of a novel evaluation method for endoscopic ultrasound-guided fine-needle biopsy in pancreatic diseases using artificial intelligence[J]. Diagnostics (Basel), 2022, 12(2): 434. DOI: 10.3390/diagnostics12020434
|
[33] |
Zhang J, Zhu L R, Yao L W, et al. Deep learning-based pancreas segmentation and station recognition system in EUS: development and validation of a useful training tool (with video)[J]. Gastrointest Endosc, 2020, 92(4): 874-885.e3. DOI: 10.1016/j.gie.2020.04.071
|
[34] |
Yao L W, Zhang J, Liu J, et al. A deep learning-based system for bile duct annotation and station recognition in linear endoscopic ultrasound[J]. EBioMedicine, 2021, 65: 103238. DOI: 10.1016/j.ebiom.2021.103238
|
[35] |
Iwasa Y, Iwashita T, Takeuchi Y, et al. Automatic segmentation of pancreatic tumors using deep learning on a video image of contrast-enhanced endoscopic ultrasound[J]. J Clin Med, 2021, 10(16): 3589. DOI: 10.3390/jcm10163589
|
[36] |
Seo K, Lim J H, Seo J, et al. Semantic segmentation of pancreatic cancer in endoscopic ultrasound images using deep learning approach[J]. Cancers (Basel), 2022, 14(20): 5111. DOI: 10.3390/cancers14205111
|
[37] |
Stassen P M C, De Jonge P J F, Webster G J M, et al. Clinical practice patterns in indirect peroral cholangiopancreatoscopy: outcome of a European survey[J]. Endosc Int Open, 2021, 9(11): E1704-E1711. DOI: 10.1055/a-1535-1458
|
[38] |
Gerges C, Beyna T, Tang R S Y, et al. Digital single-operator peroral cholangioscopy-guided biopsy sampling versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized, multicenter trial (with video)[J]. Gastrointest Endosc, 2020, 91(5): 1105-1113. DOI: 10.1016/j.gie.2019.11.025
|
[39] |
Jang S, Stevens T, Kou L, et al. Efficacy of digital single-operator cholangioscopy and factors affecting its accuracy in the evaluation of indeterminate biliary stricture[J]. Gastrointest Endosc, 2020, 91(2): 385-393.e1. DOI: 10.1016/j.gie.2019.09.015
|
[40] |
Marya N B, Powers P D, Petersen B T, et al. Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video)[J]. Gastrointest Endosc, 2023, 97(2): 268-278.e1. DOI: 10.1016/j.gie.2022.08.021
|
[41] |
Ribeiro T, Saraiva M M, Afonso J, et al. Automatic identification of papillary projections in indeterminate biliary strictures using digital single-operator cholangioscopy[J]. Clin Transl Gastroenterol, 2021, 12(11): e00418. DOI: 10.14309/ctg.0000000000000418
|
[42] |
Robles-Medranda C, Oleas R, Sánchez-Carriel M, et al. Vascularity can distinguish neoplastic from non-neoplastic bile duct lesions during digital single-operator cholangioscopy[J]. Gastrointest Endosc, 2021, 93(4): 935-941. DOI: 10.1016/j.gie.2020.07.025
|
[43] |
Pereira P, Mascarenhas M, Ribeiro T, et al. Automatic detection of tumor vessels in indeterminate biliary strictures in digital single-operator cholangioscopy[J]. Endosc Int Open, 2022, 10(3): E262-E268. DOI: 10.1055/a-1723-3369
|
[44] |
Saraiva M M, Ribeiro T, Ferreira J P S, et al. Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study[J]. Gastrointest Endosc, 2022, 95(2): 339-348. DOI: 10.1016/j.gie.2021.08.027
|
[1] | XUE Jionghao, LI Zhipeng, ZHAO Yuanli. The Technological Advances and Prospects of Vascularized Brain Organoids[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 277-284. DOI: 10.12290/xhyxzz.2025-0056 |
[2] | WANG Xianze, PING Lu, WU Wenming. Deriving New Ideas for the Diagnosis and Treatment of Pancreatic Neuroendocrine Neoplasms from Basic Research[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 734-739. DOI: 10.12290/xhyxzz.2024-0386 |
[3] | QU Yang, ZHANG Yanna, ZHOU Yidong, SUN Qiang. Application of 21-gene Recurrence Score in Hormone Receptor Positive Breast Cancer Patients[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1274-1281. DOI: 10.12290/xhyxzz.2023-0226 |
[4] | MA Mingsheng, SONG Hongmei. Acceleration of Precision Medicine in Pediatric Rheumatic and Immunologic Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 229-233. DOI: 10.12290/xhyxzz.2023-0080 |
[5] | WANG Guochang, ZHU Zhaohui. Molecular Imaging-guided Precise Theranostics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 165-168. DOI: 10.12290/xhyxzz.2021-0773 |
[6] | CHEN Wen, ZHOU Zhou. Application of Genetic Testing in Precision Medicine for Coronary Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 445-449. DOI: 10.12290/xhyxzz.2021-0418 |
[7] | LIU Yan-hong, YE Qing. The Characteristics of the Construction and Development of Biobank in the Era of Precision Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 254-259. DOI: 10.3969/j.issn.1674-9081.2020.00.008 |
[8] | Yue-kun WANG, Peng-hao LIU, Yu WANG, Wen-bin MA. Single-cell Sequencing and Its Prospect in the Management of Brain Malignant Tumor[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 606-614. DOI: 10.3969/j.issn.1674-9081.2020.05.018 |
[9] | Wei WU, Yi-ning WANG, Jing-wen DAI, Zheng-yu JIN, Shu-yang ZHANG. New Clinical Diagnostic Pathway of Primary Cardiomyopathy: from High-resolution Imaging to Molecular Precision Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(1): 6-10. DOI: 10.3969/j.issn.1674-9081.2019.01.002 |
[10] | Bo ZHANG. Development of Pathology in Coming Era of Precision Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 117-121. DOI: 10.3969/j.issn.1674-9081.2017.03.007 |
1. |
陈玉莹,邓小丽,李玥璐,王丽婷. 慢性阻塞性肺疾病运动恐惧研究进展. 全科护理. 2024(16): 3023-3026 .
![]() | |
2. |
郑蔓,李文婷,岳可焕,张琳琳,高雅萍,翟燕. 严肃游戏在老年慢性疼痛患者中的应用研究进展. 中国护理管理. 2024(12): 1841-1845 .
![]() |