LAI Xinxiu, WANG Xiang. Application Status and Research Advances of Artificial Intelligence in Pancreatobiliary Endoscopy[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 387-393. DOI: 10.12290/xhyxzz.2023-0524
Citation: LAI Xinxiu, WANG Xiang. Application Status and Research Advances of Artificial Intelligence in Pancreatobiliary Endoscopy[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 387-393. DOI: 10.12290/xhyxzz.2023-0524

Application Status and Research Advances of Artificial Intelligence in Pancreatobiliary Endoscopy

Funds: 

Science and Technology Project of Gansu Province 21YF5FA124

More Information
  • Corresponding author:

    WANG Xiang, E-mail: wangxiang@lzu.edu.cn

  • Received Date: November 05, 2023
  • Accepted Date: November 19, 2023
  • Available Online: November 22, 2023
  • Issue Publish Date: March 29, 2024
  • Traditional pancreatobiliary endoscopy surgery is limited by the fact that capturing image information is time-consuming, inefficient, and susceptible to the level of the practitioner. Artificial intelligence, however, provides an efficient and accurate method of automatic image recognition for pancreaticobiliary endoscopic surgery, thus assisting clinicians to achieve rapid and accurate clinical predictions and guiding clinical decision-making. Moreover, artificial intelligence has great potential for applications in many aspects such as quality control and training of procedure. This paper provides an overview of the current status and research progress in the application of artificial intelligence in pancreatic and biliary endoscopic techniques, with the hope of offering new ideas and methods for improving the current clinical diagnosis and treatment pattern and realizing precision medicine for pancreatobiliary diseases.
  • [1]
    Choi R Y, Coyner A S, Kalpathy-Cramer J, et al. Introduction to machine learning, neural networks, and deep learning[J]. Transl Vis Sci Technol, 2020, 9(2): 14.
    [2]
    Chan H P, Samala R K, Hadjiiski L M, et al. Deep learning in medical image analysis[J]. Adv Exp Med Biol, 2020, 1213: 3-21.
    [3]
    Koleth G, Emmanue J, Spadaccini M, et al. Artificial intelligence in gastroenterology: Where are we heading?[J]. Endosc Int Open, 2022, 10(11): E1474-E1480. DOI: 10.1055/a-1907-6569
    [4]
    LE BERRE C, SANDBORN W J, ARIDHI S, et al. Application of artificial intelligence to gastroenterology and hepatology[J]. Gastroenterology, 2020, 158(1): 76-94.e2. DOI: 10.1053/j.gastro.2019.08.058
    [5]
    Jovanovic P, Salkic N N, Zerem E. Artificial neural network predicts the need for therapeutic ERCP in patients with suspected choledocholithiasis[J]. Gastrointest Endosc, 2014, 80(2): 260-268. DOI: 10.1016/j.gie.2014.01.023
    [6]
    Dalai C, Azizian J, Trieu H, et al. Machine learning models compared to existing criteria for noninvasive prediction of endoscopic retrograde cholangiopancreatography-confirmed choledocholithiasis[J]. Liver Res, 2021, 5(4): 224-231. DOI: 10.1016/j.livres.2021.10.001
    [7]
    Kim T, Kim J, Choi H S, et al. Artificial intelligence-assisted analysis of endoscopic retrograde cholangiopancreatography image for identifying ampulla and difficulty of selective cannulation[J]. Sci Rep, 2021, 11(1): 8381. DOI: 10.1038/s41598-021-87737-3
    [8]
    Huang L, Lu X Y, Huang X, et al. Intelligent difficulty scoring and assistance system for endoscopic extraction of common bile duct stones based on deep learning: multicenter study[J]. Endoscopy, 2021, 53(5): 491-498. DOI: 10.1055/a-1244-5698
    [9]
    Bang J Y, Hough M, Hawes R H, et al. Use of artificial intelligence to reduce radiation exposure at fluoroscopy-guided endoscopic procedures[J]. Am J Gastroenterol, 2020, 115(4): 555-561. DOI: 10.14309/ajg.0000000000000565
    [10]
    Bittner J G 4th, Mellinger J D, Imam T, et al. Face and construct validity of a computer-based virtual reality simulator for ERCP[J]. Gastrointest Endosc, 2010, 71(2): 357-364. DOI: 10.1016/j.gie.2009.08.033
    [11]
    Kochar B, Akshintala V S, Afghani E, et al. Incidence, severity, and mortality of post-ERCP pancreatitis: a systematic review by using randomized, controlled trials[J]. Gastrointest Endosc, 2015, 81(1): 143-149.e9. DOI: 10.1016/j.gie.2014.06.045
    [12]
    Saito H, Fujimoto A, Oomoto K, et al. Current approaches and questions yet to be resolved for the prophylaxis of post-endoscopic retrograde cholangiopancreatography pancreatitis[J]. World J Gastrointest Endosc, 2022, 14(11): 657-666. DOI: 10.4253/wjge.v14.i11.657
    [13]
    Archibugi L, Ciarfaglia G, Cárdenas-Jaén K, et al. Machine learning for the prediction of post-ERCP pancreatitis risk: a proof-of-concept study[J]. Dig Liver Dis, 2023, 55(3): 387-393. DOI: 10.1016/j.dld.2022.10.005
    [14]
    Zhang X, Yue P, Zhang J D, et al. A novel machine learning model and a public online prediction platform for prediction of post-ERCP-cholecystitis (PEC)[J]. EClinicalMedicine, 2022, 48: 101431. DOI: 10.1016/j.eclinm.2022.101431
    [15]
    Smith Z L, Mullady D K, Lang G D, et al. A randomized controlled trial evaluating general endotracheal anesthesia versus monitored anesthesia care and the incidence of sedation-related adverse events during ERCP in high-risk patients[J]. Gastrointest Endosc, 2019, 89(4): 855-862. DOI: 10.1016/j.gie.2018.09.001
    [16]
    Hormati A, Aminnejad R, Saeidi M, et al. Prevalence of anesthetic and gastrointestinal complications of endoscopic retrograde cholangiopancreatography[J]. Anesth Pain Med, 2019, 9(4): e95796.
    [17]
    Kang H, Lee B, Jo J H, et al. Machine-learning model for the prediction of hypoxaemia during endoscopic retrograde cholangiopancreatography under monitored anaesthesia care[J]. Yonsei Med J, 2023, 64(1): 25-34. DOI: 10.3349/ymj.2022.0381
    [18]
    Coté G A, Elmunzer B J, Forster E, et al. Development of an automated ERCP Quality Report Card using structured data fields[J]. Tech Innov Gastrointest Endosc, 2021, 23(2): 129-138. DOI: 10.1016/j.tige.2021.01.005
    [19]
    Imler T D, Sherman S, Imperiale T F, et al. Provider-specific quality measurement for ERCP using natural language processing[J]. Gastrointest Endosc, 2018, 87(1): 164-173.e2. DOI: 10.1016/j.gie.2017.04.030
    [20]
    Norton I D, Zheng Y, Wiersema M S, et al. Neural network analysis of EUS images to differentiate between pancreatic malignancy and pancreatitis[J]. Gastrointest Endosc, 2001, 54(5): 625-629. DOI: 10.1067/mge.2001.118644
    [21]
    Zhu M L, Xu C, Yu J G, et al. Differentiation of pancreatic cancer and chronic pancreatitis using computer-aided diagnosis of endoscopic ultrasound (EUS) images: a diagnostic test[J]. PLoS One, 2013, 8(5): e63820. DOI: 10.1371/journal.pone.0063820
    [22]
    Sǎftoiu A, Vilmann P, Dietrich C F, et al. Quantitative contrast-enhanced harmonic EUS in differential diagnosis of focal pancreatic masses (with videos)[J]. Gastrointest Endosc, 2015, 82(1): 59-69. DOI: 10.1016/j.gie.2014.11.040
    [23]
    Zhang M M, Yang H, Jin Z D, et al. Differential diagnosis of pancreatic cancer from normal tissue with digital imaging processing and pattern recognition based on a support vector machine of EUS images[J]. Gastrointest Endosc, 2010, 72(5): 978-985. DOI: 10.1016/j.gie.2010.06.042
    [24]
    Ozkan M, Cakiroglu M, Kocaman O, et al. Age-based computer-aided diagnosis approach for pancreatic cancer on endoscopic ultrasound images[J]. Endosc Ultrasound, 2016, 5(2): 101-107. DOI: 10.4103/2303-9027.180473
    [25]
    Marya N B, Powers P D, Chari S T, et al. Utilisation of artificial intelligence for the development of an EUS-convolutional neural network model trained to enhance the diagnosis of autoimmune pancreatitis[J]. Gut, 2021, 70(7): 1335-1344. DOI: 10.1136/gutjnl-2020-322821
    [26]
    Goyal H, Sherazi S A A, Gupta S, et al. Application of artificial intelligence in diagnosis of pancreatic malignancies by endoscopic ultrasound: a systemic review[J]. Therap Adv Gastroenterol, 2022, 15: 17562848221093873.
    [27]
    Tonozuka R, Itoi T, Nagata N, et al. Deep learning analysis for the detection of pancreatic cancer on endosonographic images: a pilot study[J]. J Hepatobiliary Pancreat Sci, 2021, 28(1): 95-104. DOI: 10.1002/jhbp.825
    [28]
    Kuwahara T, Hara K, Mizuno N, et al. Usefulness of deep learning analysis for the diagnosis of malignancy in intraduc-tal papillary mucinous neoplasms of the pancreas[J]. Clin Transl Gastroenterol, 2019, 10(5): 1-8.
    [29]
    Udriştoiu A L, Cazacu I M, Gruionu L G, et al. Real-time computer-aided diagnosis of focal pancreatic masses from endoscopic ultrasound imaging based on a hybrid convolutional and long short-term memory neural network model[J]. PLoS One, 2021, 16(6): e0251701. DOI: 10.1371/journal.pone.0251701
    [30]
    Jang S I, Kim Y J, Kim E J, et al. Diagnostic performance of endoscopic ultrasound-artificial intelligence using deep learning analysis of gallbladder polypoid lesions[J]. J Gastroenterol Hepatol, 2021, 36(12): 3548-3555. DOI: 10.1111/jgh.15673
    [31]
    Spadaccini M, Koleth G, Emmanuel J, et al. Enhanced endoscopic ultrasound imaging for pancreatic lesions: The road to artificial intelligence[J]. World J Gastroenterol, 2022, 28(29): 3814-3824. DOI: 10.3748/wjg.v28.i29.3814
    [32]
    Ishikawa T, Hayakawa M, Suzuki H, et al. Development of a novel evaluation method for endoscopic ultrasound-guided fine-needle biopsy in pancreatic diseases using artificial intelligence[J]. Diagnostics (Basel), 2022, 12(2): 434. DOI: 10.3390/diagnostics12020434
    [33]
    Zhang J, Zhu L R, Yao L W, et al. Deep learning-based pancreas segmentation and station recognition system in EUS: development and validation of a useful training tool (with video)[J]. Gastrointest Endosc, 2020, 92(4): 874-885.e3. DOI: 10.1016/j.gie.2020.04.071
    [34]
    Yao L W, Zhang J, Liu J, et al. A deep learning-based system for bile duct annotation and station recognition in linear endoscopic ultrasound[J]. EBioMedicine, 2021, 65: 103238. DOI: 10.1016/j.ebiom.2021.103238
    [35]
    Iwasa Y, Iwashita T, Takeuchi Y, et al. Automatic segmentation of pancreatic tumors using deep learning on a video image of contrast-enhanced endoscopic ultrasound[J]. J Clin Med, 2021, 10(16): 3589. DOI: 10.3390/jcm10163589
    [36]
    Seo K, Lim J H, Seo J, et al. Semantic segmentation of pancreatic cancer in endoscopic ultrasound images using deep learning approach[J]. Cancers (Basel), 2022, 14(20): 5111. DOI: 10.3390/cancers14205111
    [37]
    Stassen P M C, De Jonge P J F, Webster G J M, et al. Clinical practice patterns in indirect peroral cholangiopancreatoscopy: outcome of a European survey[J]. Endosc Int Open, 2021, 9(11): E1704-E1711. DOI: 10.1055/a-1535-1458
    [38]
    Gerges C, Beyna T, Tang R S Y, et al. Digital single-operator peroral cholangioscopy-guided biopsy sampling versus ERCP-guided brushing for indeterminate biliary strictures: a prospective, randomized, multicenter trial (with video)[J]. Gastrointest Endosc, 2020, 91(5): 1105-1113. DOI: 10.1016/j.gie.2019.11.025
    [39]
    Jang S, Stevens T, Kou L, et al. Efficacy of digital single-operator cholangioscopy and factors affecting its accuracy in the evaluation of indeterminate biliary stricture[J]. Gastrointest Endosc, 2020, 91(2): 385-393.e1. DOI: 10.1016/j.gie.2019.09.015
    [40]
    Marya N B, Powers P D, Petersen B T, et al. Identification of patients with malignant biliary strictures using a cholangioscopy-based deep learning artificial intelligence (with video)[J]. Gastrointest Endosc, 2023, 97(2): 268-278.e1. DOI: 10.1016/j.gie.2022.08.021
    [41]
    Ribeiro T, Saraiva M M, Afonso J, et al. Automatic identification of papillary projections in indeterminate biliary strictures using digital single-operator cholangioscopy[J]. Clin Transl Gastroenterol, 2021, 12(11): e00418. DOI: 10.14309/ctg.0000000000000418
    [42]
    Robles-Medranda C, Oleas R, Sánchez-Carriel M, et al. Vascularity can distinguish neoplastic from non-neoplastic bile duct lesions during digital single-operator cholangioscopy[J]. Gastrointest Endosc, 2021, 93(4): 935-941. DOI: 10.1016/j.gie.2020.07.025
    [43]
    Pereira P, Mascarenhas M, Ribeiro T, et al. Automatic detection of tumor vessels in indeterminate biliary strictures in digital single-operator cholangioscopy[J]. Endosc Int Open, 2022, 10(3): E262-E268. DOI: 10.1055/a-1723-3369
    [44]
    Saraiva M M, Ribeiro T, Ferreira J P S, et al. Artificial intelligence for automatic diagnosis of biliary stricture malignancy status in single-operator cholangioscopy: a pilot study[J]. Gastrointest Endosc, 2022, 95(2): 339-348. DOI: 10.1016/j.gie.2021.08.027
  • Related Articles

    [1]XUE Jionghao, LI Zhipeng, ZHAO Yuanli. The Technological Advances and Prospects of Vascularized Brain Organoids[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 277-284. DOI: 10.12290/xhyxzz.2025-0056
    [2]WANG Xianze, PING Lu, WU Wenming. Deriving New Ideas for the Diagnosis and Treatment of Pancreatic Neuroendocrine Neoplasms from Basic Research[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 734-739. DOI: 10.12290/xhyxzz.2024-0386
    [3]QU Yang, ZHANG Yanna, ZHOU Yidong, SUN Qiang. Application of 21-gene Recurrence Score in Hormone Receptor Positive Breast Cancer Patients[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1274-1281. DOI: 10.12290/xhyxzz.2023-0226
    [4]MA Mingsheng, SONG Hongmei. Acceleration of Precision Medicine in Pediatric Rheumatic and Immunologic Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 229-233. DOI: 10.12290/xhyxzz.2023-0080
    [5]WANG Guochang, ZHU Zhaohui. Molecular Imaging-guided Precise Theranostics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 165-168. DOI: 10.12290/xhyxzz.2021-0773
    [6]CHEN Wen, ZHOU Zhou. Application of Genetic Testing in Precision Medicine for Coronary Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 445-449. DOI: 10.12290/xhyxzz.2021-0418
    [7]LIU Yan-hong, YE Qing. The Characteristics of the Construction and Development of Biobank in the Era of Precision Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 254-259. DOI: 10.3969/j.issn.1674-9081.2020.00.008
    [8]Yue-kun WANG, Peng-hao LIU, Yu WANG, Wen-bin MA. Single-cell Sequencing and Its Prospect in the Management of Brain Malignant Tumor[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 606-614. DOI: 10.3969/j.issn.1674-9081.2020.05.018
    [9]Wei WU, Yi-ning WANG, Jing-wen DAI, Zheng-yu JIN, Shu-yang ZHANG. New Clinical Diagnostic Pathway of Primary Cardiomyopathy: from High-resolution Imaging to Molecular Precision Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(1): 6-10. DOI: 10.3969/j.issn.1674-9081.2019.01.002
    [10]Bo ZHANG. Development of Pathology in Coming Era of Precision Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 117-121. DOI: 10.3969/j.issn.1674-9081.2017.03.007
  • Cited by

    Periodical cited type(2)

    1. 陈玉莹,邓小丽,李玥璐,王丽婷. 慢性阻塞性肺疾病运动恐惧研究进展. 全科护理. 2024(16): 3023-3026 .
    2. 郑蔓,李文婷,岳可焕,张琳琳,高雅萍,翟燕. 严肃游戏在老年慢性疼痛患者中的应用研究进展. 中国护理管理. 2024(12): 1841-1845 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (229) PDF downloads (25) Cited by(2)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close