Citation: | WANG Xianze, PING Lu, WU Wenming. Deriving New Ideas for the Diagnosis and Treatment of Pancreatic Neuroendocrine Neoplasms from Basic Research[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 734-739. DOI: 10.12290/xhyxzz.2024-0386 |
Pancreatic neuroendocrine neoplasm (pNEN) is the most common neuroendocrine tumor in the digestive system. The heterogeneity of pNEN makes it difficult to summarize diagnostic and therapeutic strategies only based on clinical experience. Over the past 20 years, basic research on pNEN has been well developed, which in turn has promoted its theoretical system and diagnostic and therapeutic strategies, significantly improving the therapeutic efficacy of pNEN. In this paper, we review the development of basic research on pNEN in recent years and discuss its role in clinical diagnosis and treatment. On the one hand, the development of basic research can further reveal the nature of the differential biological behavior of pNEN and provide clinical reference; on the other hand, reference to the migratory basic research results in other tumor fields is also conducive to improving the clinical diagnosis and treatment level of pNEN.
[1] |
Chi Y H B L, Jiang L M, Shi S S, et al. Chinese expert consensus on multidisciplinary diagnosis and treatment of pancreatic neuroendocrine liver metastases[J]. J Pancreatol, 2023, 6(4): 139-150. DOI: 10.1097/JP9.0000000000000141
|
[1] |
Chi Y H B L, Jiang L M, Shi S S, et al. Chinese expert consensus on multidisciplinary diagnosis and treatment of pancreatic neuroendocrine liver metastases[J]. J Pancreatol, 2023, 6(4): 139-150. DOI: 10.1097/JP9.0000000000000141
|
[2] |
Chan C S, Laddha S V, Lewis P W, et al. ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup[J]. Nat Commun, 2018, 9(1): 4158. DOI: 10.1038/s41467-018-06498-2
|
[2] |
Chan C S, Laddha S V, Lewis P W, et al. ATRX, DAXX or MEN1 mutant pancreatic neuroendocrine tumors are a distinct alpha-cell signature subgroup[J]. Nat Commun, 2018, 9(1): 4158. DOI: 10.1038/s41467-018-06498-2
|
[3] |
Sadanandam A, Wullschleger S, Lyssiotis C A, et al. A cross-species analysis in pancreatic neuroendocrine tumors reveals molecular subtypes with distinctive clinical, metastatic, developmental, and metabolic characteristics[J]. Cancer Discov, 2015, 5(12): 1296-1313. DOI: 10.1158/2159-8290.CD-15-0068
|
[3] |
Sadanandam A, Wullschleger S, Lyssiotis C A, et al. A cross-species analysis in pancreatic neuroendocrine tumors reveals molecular subtypes with distinctive clinical, metastatic, developmental, and metabolic characteristics[J]. Cancer Discov, 2015, 5(12): 1296-1313. DOI: 10.1158/2159-8290.CD-15-0068
|
[4] |
Cejas P, Drier Y, Dreijerink K M A, et al. Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors[J]. Nat Med, 2019, 25(8): 1260-1265. DOI: 10.1038/s41591-019-0493-4
|
[4] |
Cejas P, Drier Y, Dreijerink K M A, et al. Enhancer signatures stratify and predict outcomes of non-functional pancreatic neuroendocrine tumors[J]. Nat Med, 2019, 25(8): 1260-1265. DOI: 10.1038/s41591-019-0493-4
|
[5] |
Di Domenico A, Pipinikas C P, Maire R S, et al. Epigenetic landscape of pancreatic neuroendocrine tumours reveals distinct cells of origin and means of tumour progression[J]. Commun Biol, 2020, 3(1): 740. DOI: 10.1038/s42003-020-01479-y
|
[5] |
Di Domenico A, Pipinikas C P, Maire R S, et al. Epigenetic landscape of pancreatic neuroendocrine tumours reveals distinct cells of origin and means of tumour progression[J]. Commun Biol, 2020, 3(1): 740. DOI: 10.1038/s42003-020-01479-y
|
[6] |
Rindi G, Mete O, Uccella S, et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms[J]. Endocr Pathol, 2022, 33(1): 115-154. DOI: 10.1007/s12022-022-09708-2
|
[6] |
Rindi G, Mete O, Uccella S, et al. Overview of the 2022 WHO classification of neuroendocrine neoplasms[J]. Endocr Pathol, 2022, 33(1): 115-154. DOI: 10.1007/s12022-022-09708-2
|
[7] |
Neyaz A, Crotty R, Rickelt S, et al. Predicting recurrence in pancreatic neuroendocrine tumours: role of ARX and alternative lengthening of telomeres (ALT)[J]. Histopathology, 2023, 83(4): 546-558. DOI: 10.1111/his.14996
|
[7] |
Neyaz A, Crotty R, Rickelt S, et al. Predicting recurrence in pancreatic neuroendocrine tumours: role of ARX and alternative lengthening of telomeres (ALT)[J]. Histopathology, 2023, 83(4): 546-558. DOI: 10.1111/his.14996
|
[8] |
Yachida S, Totoki Y, Noë M, et al. Comprehensive genomic profiling of neuroendocrine carcinomas of the gastrointestinal system[J]. Cancer Discov, 2022, 12(3): 692-711. DOI: 10.1158/2159-8290.CD-21-0669
|
[8] |
Yachida S, Totoki Y, Noë M, et al. Comprehensive genomic profiling of neuroendocrine carcinomas of the gastrointestinal system[J]. Cancer Discov, 2022, 12(3): 692-711. DOI: 10.1158/2159-8290.CD-21-0669
|
[9] |
Mu P, Zhang Z D, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer[J]. Science, 2017, 355(6320): 84-88. DOI: 10.1126/science.aah4307
|
[9] |
Mu P, Zhang Z D, Benelli M, et al. SOX2 promotes lineage plasticity and antiandrogen resistance in TP53- and RB1-deficient prostate cancer[J]. Science, 2017, 355(6320): 84-88. DOI: 10.1126/science.aah4307
|
[10] |
Scarpa A, Chang D K, Nones K, et al. Whole-genome landscape of pancreatic neuroendocrine tumours[J]. Nature, 2017, 543(7643): 65-71. DOI: 10.1038/nature21063
|
[10] |
Scarpa A, Chang D K, Nones K, et al. Whole-genome landscape of pancreatic neuroendocrine tumours[J]. Nature, 2017, 543(7643): 65-71. DOI: 10.1038/nature21063
|
[11] |
Christakis I, Qiu W, Hyde S M, et al. Genotype-phenotype pancreatic neuroendocrine tumor relationship in multiple endocrine neoplasia type 1 patients: a 23-year experience at a single institution[J]. Surgery, 2018, 163(1): 212-217. DOI: 10.1016/j.surg.2017.04.044
|
[11] |
Christakis I, Qiu W, Hyde S M, et al. Genotype-phenotype pancreatic neuroendocrine tumor relationship in multiple endocrine neoplasia type 1 patients: a 23-year experience at a single institution[J]. Surgery, 2018, 163(1): 212-217. DOI: 10.1016/j.surg.2017.04.044
|
[12] |
Niederle B, Selberherr A, Bartsch D K, et al. Multiple endocrine neoplasia type 1 and the pancreas: diagnosis and treatment of functioning and non-functioning pancreatic and duodenal neuroendocrine neoplasia within the MEN1 syndrome-an international consensus statement[J]. Neuroendocrinology, 2021, 111(7): 609-630. DOI: 10.1159/000511791
|
[12] |
Niederle B, Selberherr A, Bartsch D K, et al. Multiple endocrine neoplasia type 1 and the pancreas: diagnosis and treatment of functioning and non-functioning pancreatic and duodenal neuroendocrine neoplasia within the MEN1 syndrome-an international consensus statement[J]. Neuroendocrinology, 2021, 111(7): 609-630. DOI: 10.1159/000511791
|
[13] |
Backman S, Botling J, Nord H, et al. The evolutionary history of metastatic pancreatic neuroendocrine tumours reveals a therapy driven route to high-grade transformation[J/OL]. medRxiv: 1-30. https://doi.org/10.1101/2024.01.08.24300723. doi: 10.1101/2024.01.08.24300723.
|
[13] |
Backman S, Botling J, Nord H, et al. The evolutionary history of metastatic pancreatic neuroendocrine tumours reveals a therapy driven route to high-grade transformation[J/OL]. medRxiv: 1-30. https://doi.org/10.1101/2024.01.08.24300723. doi: 10.1101/2024.01.08.24300723.
|
[14] |
Alvarez M J, Subramaniam P S, Tang L H, et al. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors[J]. Nat Genet, 2018, 50(7): 979-989. DOI: 10.1038/s41588-018-0138-4
|
[14] |
Alvarez M J, Subramaniam P S, Tang L H, et al. A precision oncology approach to the pharmacological targeting of mechanistic dependencies in neuroendocrine tumors[J]. Nat Genet, 2018, 50(7): 979-989. DOI: 10.1038/s41588-018-0138-4
|
[15] |
Merrins M J, Corkey B E, Kibbey R G, et al. Metabolic cycles and signals for insulin secretion[J]. Cell Metab, 2022, 34(7): 947-968. DOI: 10.1016/j.cmet.2022.06.003
|
[15] |
Merrins M J, Corkey B E, Kibbey R G, et al. Metabolic cycles and signals for insulin secretion[J]. Cell Metab, 2022, 34(7): 947-968. DOI: 10.1016/j.cmet.2022.06.003
|
[16] |
Benninger R K P, Kravets V. The physiological role of β-cell heterogeneity in pancreatic islet function[J]. Nat Rev Endocrinol, 2022, 18(1): 9-22. DOI: 10.1038/s41574-021-00568-0
|
[16] |
Benninger R K P, Kravets V. The physiological role of β-cell heterogeneity in pancreatic islet function[J]. Nat Rev Endocrinol, 2022, 18(1): 9-22. DOI: 10.1038/s41574-021-00568-0
|
[17] |
Gendaszewska-Darmach E, Drzazga A, Koziołkiewicz M. Targeting GPCRs activated by fatty acid-derived lipids in type 2 diabetes[J]. Trends Mol Med, 2019, 25(10): 915-929. DOI: 10.1016/j.molmed.2019.07.003
|
[17] |
Gendaszewska-Darmach E, Drzazga A, Koziołkiewicz M. Targeting GPCRs activated by fatty acid-derived lipids in type 2 diabetes[J]. Trends Mol Med, 2019, 25(10): 915-929. DOI: 10.1016/j.molmed.2019.07.003
|
[18] |
Imam H, Eriksson B, Lukinius A, et al. Induction of apoptosis in neuroendocrine tumors of the digestive system during treatment with somatostatin analogs[J]. Acta Oncol, 1997, 36(6): 607-614. DOI: 10.3109/02841869709001323
|
[18] |
Imam H, Eriksson B, Lukinius A, et al. Induction of apoptosis in neuroendocrine tumors of the digestive system during treatment with somatostatin analogs[J]. Acta Oncol, 1997, 36(6): 607-614. DOI: 10.3109/02841869709001323
|
[19] |
Kaku M, Nishiyama T, Yagawa K, et al. Establishment of a carcinoembryonic antigen-producing cell line from human pancreatic carcinoma[J]. Gan, 1980, 71(5): 596-601.
|
[19] |
Kaku M, Nishiyama T, Yagawa K, et al. Establishment of a carcinoembryonic antigen-producing cell line from human pancreatic carcinoma[J]. Gan, 1980, 71(5): 596-601.
|
[20] |
Vandamme T, Peeters M, Dogan F, et al. Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1[J]. J Mol Endocrinol, 2015, 54(2): 137-147. DOI: 10.1530/JME-14-0304
|
[20] |
Vandamme T, Peeters M, Dogan F, et al. Whole-exome characterization of pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1[J]. J Mol Endocrinol, 2015, 54(2): 137-147. DOI: 10.1530/JME-14-0304
|
[21] |
Luley K B, Biedermann S B, Künstner A, et al. A comprehensive molecular characterization of the pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1[J]. Cancers (Basel), 2020, 12(3): 691. DOI: 10.3390/cancers12030691
|
[21] |
Luley K B, Biedermann S B, Künstner A, et al. A comprehensive molecular characterization of the pancreatic neuroendocrine tumor cell lines BON-1 and QGP-1[J]. Cancers (Basel), 2020, 12(3): 691. DOI: 10.3390/cancers12030691
|
[22] |
Detjen K, Hammerich L, zdirik B, et al. Models of gastroenteropancreatic neuroendocrine neoplasms: current status and future directions[J]. Neuroendocrinology, 2021, 111(3): 217-236. DOI: 10.1159/000509864
|
[22] |
Detjen K, Hammerich L, zdirik B, et al. Models of gastroenteropancreatic neuroendocrine neoplasms: current status and future directions[J]. Neuroendocrinology, 2021, 111(3): 217-236. DOI: 10.1159/000509864
|
[23] |
Kawasaki K, Toshimitsu K, Matano M, et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping[J]. Cell, 2020, 183(5): 1420-1435.e21. DOI: 10.1016/j.cell.2020.10.023
|
[23] |
Kawasaki K, Toshimitsu K, Matano M, et al. An organoid biobank of neuroendocrine neoplasms enables genotype-phenotype mapping[J]. Cell, 2020, 183(5): 1420-1435.e21. DOI: 10.1016/j.cell.2020.10.023
|
[24] |
Deftos L J. Chromogranin A: its role in endocrine function and as an endocrine and neuroendocrine tumor marker[J]. Endocr Rev, 1991, 12(2): 181-187. DOI: 10.1210/edrv-12-2-181
|
[24] |
Deftos L J. Chromogranin A: its role in endocrine function and as an endocrine and neuroendocrine tumor marker[J]. Endocr Rev, 1991, 12(2): 181-187. DOI: 10.1210/edrv-12-2-181
|
[25] |
O'Toole D, Grossman A, Gross D, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: biochemical markers[J]. Neuroendocrinology, 2009, 90(2): 194-202. DOI: 10.1159/000225948
|
[25] |
O'Toole D, Grossman A, Gross D, et al. ENETS consensus guidelines for the standards of care in neuroendocrine tumors: biochemical markers[J]. Neuroendocrinology, 2009, 90(2): 194-202. DOI: 10.1159/000225948
|
[26] |
Zouli C, Zisimopoulou E, Chrisoulidou A. Biomarkers in neuroendocrine neoplasms[J]. Hell J Nucl Med, 2023, 26(Suppl): 44-48.
|
[26] |
Zouli C, Zisimopoulou E, Chrisoulidou A. Biomarkers in neuroendocrine neoplasms[J]. Hell J Nucl Med, 2023, 26(Suppl): 44-48.
|
[27] |
Faias S, Prazeres S, Cunha M, et al. Chromogranin a and NSE in cystic pancreatic neuroendocrine tumors[J]. Clin Res Hepatol Gastroenterol, 2021, 45(4): 101601. DOI: 10.1016/j.clinre.2020.101601
|
[27] |
Faias S, Prazeres S, Cunha M, et al. Chromogranin a and NSE in cystic pancreatic neuroendocrine tumors[J]. Clin Res Hepatol Gastroenterol, 2021, 45(4): 101601. DOI: 10.1016/j.clinre.2020.101601
|
[28] |
Modlin I M, Drozdov I, Alaimo D, et al. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection[J]. Endocr Relat Cancer, 2014, 21(4): 615-628. DOI: 10.1530/ERC-14-0190
|
[28] |
Modlin I M, Drozdov I, Alaimo D, et al. A multianalyte PCR blood test outperforms single analyte ELISAs (chromogranin A, pancreastatin, neurokinin A) for neuroendocrine tumor detection[J]. Endocr Relat Cancer, 2014, 21(4): 615-628. DOI: 10.1530/ERC-14-0190
|
[29] |
Al-Toubah T, Cives M, Valone T, et al. Sensitivity and specificity of the NETest: a validation study[J]. Neuroendocrinology, 2021, 111(6): 580-585. DOI: 10.1159/000509866
|
[29] |
Al-Toubah T, Cives M, Valone T, et al. Sensitivity and specificity of the NETest: a validation study[J]. Neuroendocrinology, 2021, 111(6): 580-585. DOI: 10.1159/000509866
|
[30] |
Bodei L, Kidd M S, Singh A, et al. PRRT neuroendocrine tumor response monitored using circulating transcript analysis: the NETest[J]. Eur J Nucl Med Mol Imaging, 2020, 47(4): 895-906. DOI: 10.1007/s00259-019-04601-3
|
[30] |
Bodei L, Kidd M S, Singh A, et al. PRRT neuroendocrine tumor response monitored using circulating transcript analysis: the NETest[J]. Eur J Nucl Med Mol Imaging, 2020, 47(4): 895-906. DOI: 10.1007/s00259-019-04601-3
|
[31] |
Partelli S, Andreasi V, Muffatti F, et al. Circulating neuroendocrine gene transcripts (NETest): a postoperative strategy for early identification of the efficacy of radical surgery for pancreatic neuroendocrine tumors[J]. Ann Surg Oncol, 2020, 27(10): 3928-3936. DOI: 10.1245/s10434-020-08425-6
|
[31] |
Partelli S, Andreasi V, Muffatti F, et al. Circulating neuroendocrine gene transcripts (NETest): a postoperative strategy for early identification of the efficacy of radical surgery for pancreatic neuroendocrine tumors[J]. Ann Surg Oncol, 2020, 27(10): 3928-3936. DOI: 10.1245/s10434-020-08425-6
|
[32] |
Van Treijen M J C, Van Der Zee D, Heeres B C, et al. Blood molecular genomic analysis predicts the disease course of gastroenteropancreatic neuroendocrine tumor patients: a validation study of the predictive value of the NETest®[J]. Neuroendocrinology, 2021, 111(6): 586-598. DOI: 10.1159/000509091
|
[32] |
Van Treijen M J C, Van Der Zee D, Heeres B C, et al. Blood molecular genomic analysis predicts the disease course of gastroenteropancreatic neuroendocrine tumor patients: a validation study of the predictive value of the NETest®[J]. Neuroendocrinology, 2021, 111(6): 586-598. DOI: 10.1159/000509091
|
[33] |
Cao K, Xia Y D, Yao J W, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning[J]. Nat Med, 2023, 29(12): 3033-3043. DOI: 10.1038/s41591-023-02640-w
|
[33] |
Cao K, Xia Y D, Yao J W, et al. Large-scale pancreatic cancer detection via non-contrast CT and deep learning[J]. Nat Med, 2023, 29(12): 3033-3043. DOI: 10.1038/s41591-023-02640-w
|
[34] |
Dong Y, Yang D H, Tian X F, et al. Pancreatic neuroendocrine tumor: prediction of tumor grades by radiomics models based on ultrasound images[J]. Br J Radiol, 2023, 96(1149): 20220783. DOI: 10.1259/bjr.20220783
|
[34] |
Dong Y, Yang D H, Tian X F, et al. Pancreatic neuroendocrine tumor: prediction of tumor grades by radiomics models based on ultrasound images[J]. Br J Radiol, 2023, 96(1149): 20220783. DOI: 10.1259/bjr.20220783
|
[35] |
Wang Y D, Hu X F, Shi S Y, et al. Utility of quantitative metrics from dual-layer spectral-detector CT for differentiation of pancreatic neuroendocrine tumor and neuroendocrine carcinoma[J]. AJR Am J Roentgenol, 2022, 218(6): 999-1009. DOI: 10.2214/AJR.21.27017
|
[35] |
Wang Y D, Hu X F, Shi S Y, et al. Utility of quantitative metrics from dual-layer spectral-detector CT for differentiation of pancreatic neuroendocrine tumor and neuroendocrine carcinoma[J]. AJR Am J Roentgenol, 2022, 218(6): 999-1009. DOI: 10.2214/AJR.21.27017
|
[36] |
Gu W C, Chen Y L, Zhu H B, et al. Development and validation of CT-based radiomics deep learning signatures to predict lymph node metastasis in non-functional pancreatic neuroendocrine tumors: a multicohort study[J]. EClinicalMedicine, 2023, 65: 102269. DOI: 10.1016/j.eclinm.2023.102269
|
[36] |
Gu W C, Chen Y L, Zhu H B, et al. Development and validation of CT-based radiomics deep learning signatures to predict lymph node metastasis in non-functional pancreatic neuroendocrine tumors: a multicohort study[J]. EClinicalMedicine, 2023, 65: 102269. DOI: 10.1016/j.eclinm.2023.102269
|
[37] |
Yao J C, Phan A T, Hess K, et al. Perfusion computed tomography as functional biomarker in randomized run-in study of bevacizumab and everolimus in well-differentiated neuroendoc-rine tumors[J]. Pancreas, 2015, 44(2): 190-197. DOI: 10.1097/MPA.0000000000000255
|
[37] |
Yao J C, Phan A T, Hess K, et al. Perfusion computed tomography as functional biomarker in randomized run-in study of bevacizumab and everolimus in well-differentiated neuroendoc-rine tumors[J]. Pancreas, 2015, 44(2): 190-197. DOI: 10.1097/MPA.0000000000000255
|
[38] |
Ding W X, Yu J Y, Zheng C J, et al. Machine learning-based noninvasive quantification of single-imaging session dual-tracer 18F-FDG and 68Ga-DOTATATE dynamic PET-CT in oncology[J]. IEEE Trans Med Imaging, 2022, 41(2): 347-359. DOI: 10.1109/TMI.2021.3112783
|
[38] |
Ding W X, Yu J Y, Zheng C J, et al. Machine learning-based noninvasive quantification of single-imaging session dual-tracer 18F-FDG and 68Ga-DOTATATE dynamic PET-CT in oncology[J]. IEEE Trans Med Imaging, 2022, 41(2): 347-359. DOI: 10.1109/TMI.2021.3112783
|
[39] |
Beleù A, Rizzo G, De Robertis R, et al. Liver tumor burden in pancreatic neuroendocrine tumors: CT features and texture analysis in the prediction of tumor grade and 18F-FDG uptake[J]. Cancers (Basel), 2020, 12(6): 1486. DOI: 10.3390/cancers12061486
|
[39] |
Beleù A, Rizzo G, De Robertis R, et al. Liver tumor burden in pancreatic neuroendocrine tumors: CT features and texture analysis in the prediction of tumor grade and 18F-FDG uptake[J]. Cancers (Basel), 2020, 12(6): 1486. DOI: 10.3390/cancers12061486
|
[40] |
Hess G F, Soysal S D, Nicolas G, et al. Surgical strategy based on radiological 3D reconstruction in a giant metastatic neuroendocrine tumor of the pancreas: a case report of an interdisciplinary approach[J]. Case Rep Surg, 2021, 2021: 8811155.
|
[40] |
Hess G F, Soysal S D, Nicolas G, et al. Surgical strategy based on radiological 3D reconstruction in a giant metastatic neuroendocrine tumor of the pancreas: a case report of an interdisciplinary approach[J]. Case Rep Surg, 2021, 2021: 8811155.
|
[41] |
Lu M, Zhang P P, Zhang Y Q, et al. Efficacy, safety, and biomarkers of toripalimab in patients with recurrent or metastatic neuroendocrine neoplasms: a multiple-center phase Ib trial[J]. Clin Cancer Res, 2020, 26(10): 2337-2345. DOI: 10.1158/1078-0432.CCR-19-4000
|
[41] |
Lu M, Zhang P P, Zhang Y Q, et al. Efficacy, safety, and biomarkers of toripalimab in patients with recurrent or metastatic neuroendocrine neoplasms: a multiple-center phase Ib trial[J]. Clin Cancer Res, 2020, 26(10): 2337-2345. DOI: 10.1158/1078-0432.CCR-19-4000
|
[42] |
Nghiem P T, Bhatia S, Lipson E J, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma[J]. N Engl J Med, 2016, 374(26): 2542-2552. DOI: 10.1056/NEJMoa1603702
|
[42] |
Nghiem P T, Bhatia S, Lipson E J, et al. PD-1 blockade with pembrolizumab in advanced Merkel-cell carcinoma[J]. N Engl J Med, 2016, 374(26): 2542-2552. DOI: 10.1056/NEJMoa1603702
|
[43] |
Kaufman H L, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial[J]. Lancet Oncol, 2016, 17(10): 1374-1385. DOI: 10.1016/S1470-2045(16)30364-3
|
[43] |
Kaufman H L, Russell J, Hamid O, et al. Avelumab in patients with chemotherapy-refractory metastatic Merkel cell carcinoma: a multicentre, single-group, open-label, phase 2 trial[J]. Lancet Oncol, 2016, 17(10): 1374-1385. DOI: 10.1016/S1470-2045(16)30364-3
|
[44] |
Da Silva A, Bowden M, Zhang S, et al. Characterization of the neuroendocrine tumor immune microenvironment[J]. Pancreas, 2018, 47(9): 1123-1129. DOI: 10.1097/MPA.0000000000001150
|
[44] |
Da Silva A, Bowden M, Zhang S, et al. Characterization of the neuroendocrine tumor immune microenvironment[J]. Pancreas, 2018, 47(9): 1123-1129. DOI: 10.1097/MPA.0000000000001150
|
[45] |
Cavalcanti E, Armentano R, Valentini A M, et al. Role of PD-L1 expression as a biomarker for GEP neuroendocrine neoplasm grading[J]. Cell Death Dis, 2017, 8(8): e3004.
|
[45] |
Cavalcanti E, Armentano R, Valentini A M, et al. Role of PD-L1 expression as a biomarker for GEP neuroendocrine neoplasm grading[J]. Cell Death Dis, 2017, 8(8): e3004.
|
[46] |
Ferrata M, Schad A, Zimmer S, et al. PD-L1 expression and immune cell infiltration in gastroenteropancreatic (GEP) and non-GEP neuroendocrine neoplasms with high prolifera-tive activity[J]. Front Oncol, 2019, 9: 343. DOI: 10.3389/fonc.2019.00343
|
[46] |
Ferrata M, Schad A, Zimmer S, et al. PD-L1 expression and immune cell infiltration in gastroenteropancreatic (GEP) and non-GEP neuroendocrine neoplasms with high prolifera-tive activity[J]. Front Oncol, 2019, 9: 343. DOI: 10.3389/fonc.2019.00343
|
[47] |
Busse A, Mochmann L H, Spenke C, et al. Immunoprofiling in neuroendocrine neoplasms unveil immunosuppressive microenvironment[J]. Cancers (Basel), 2020, 12(11): 3448. DOI: 10.3390/cancers12113448
|
[47] |
Busse A, Mochmann L H, Spenke C, et al. Immunoprofiling in neuroendocrine neoplasms unveil immunosuppressive microenvironment[J]. Cancers (Basel), 2020, 12(11): 3448. DOI: 10.3390/cancers12113448
|
[48] |
Puccini A, Poorman K, Salem M E, et al. Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs)[J]. Clin Cancer Res, 2020, 26(22): 5943-5951. DOI: 10.1158/1078-0432.CCR-20-1804
|
[48] |
Puccini A, Poorman K, Salem M E, et al. Comprehensive genomic profiling of gastroenteropancreatic neuroendocrine neoplasms (GEP-NENs)[J]. Clin Cancer Res, 2020, 26(22): 5943-5951. DOI: 10.1158/1078-0432.CCR-20-1804
|
[49] |
Vijayvergia N, Boland P M, Handorf E, et al. Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers: a Fox Chase Cancer Center Pilot Study[J]. Br J Cancer, 2016, 115(5): 564-570. DOI: 10.1038/bjc.2016.229
|
[49] |
Vijayvergia N, Boland P M, Handorf E, et al. Molecular profiling of neuroendocrine malignancies to identify prognostic and therapeutic markers: a Fox Chase Cancer Center Pilot Study[J]. Br J Cancer, 2016, 115(5): 564-570. DOI: 10.1038/bjc.2016.229
|
[50] |
Capdevila J, Hernando J, Teule A, et al. Durvalumab plus tremelimumab for the treatment of advanced neuroendocrine neoplasms of gastroenteropancreatic and lung origin[J]. Nat Commun, 2023, 14(1): 2973. DOI: 10.1038/s41467-023-38611-5
|
[50] |
Capdevila J, Hernando J, Teule A, et al. Durvalumab plus tremelimumab for the treatment of advanced neuroendocrine neoplasms of gastroenteropancreatic and lung origin[J]. Nat Commun, 2023, 14(1): 2973. DOI: 10.1038/s41467-023-38611-5
|
[51] |
Zhang P P, Shi S, Xu J M, et al. Surufatinib plus toripalimab in patients with advanced neuroendocrine tumours and neuroendocrine carcinomas: an open-label, single-arm, multi-cohort phase Ⅱ trial[J]. Eur J Cancer, 2024, 199: 113539. DOI: 10.1016/j.ejca.2024.113539
|
[51] |
Zhang P P, Shi S, Xu J M, et al. Surufatinib plus toripalimab in patients with advanced neuroendocrine tumours and neuroendocrine carcinomas: an open-label, single-arm, multi-cohort phase Ⅱ trial[J]. Eur J Cancer, 2024, 199: 113539. DOI: 10.1016/j.ejca.2024.113539
|
[52] |
Strosberg J, Mizuno N, DoiT, et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: results from the phase Ⅱ KEYNOTE-158 study[J]. Clin Cancer Res, 2020, 26(9): 2124-2130. DOI: 10.1158/1078-0432.CCR-19-3014
|
[52] |
Strosberg J, Mizuno N, DoiT, et al. Efficacy and safety of pembrolizumab in previously treated advanced neuroendocrine tumors: results from the phase Ⅱ KEYNOTE-158 study[J]. Clin Cancer Res, 2020, 26(9): 2124-2130. DOI: 10.1158/1078-0432.CCR-19-3014
|
[1] | LIU Shupeng, YU Mengyang, WU Xiaofei, WANG Hongyun. Clinical Landscape of Therapeutic Cancer Vaccines: Challenges and Opportunities[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1356-1363. DOI: 10.12290/xhyxzz.2024-0130 |
[2] | WEN Xuejun, ZHOU Wuhao, GUO Zhide, ZHANG Xianzhong. Integrin αvβ3 Targeted Radiopharmaceutical 99mTc-RGD Combined with Anti-PD-L1 mAb to Enhance the Anti-tumor Effect in Tumor Immunotherapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 766-773. DOI: 10.12290/xhyxzz.2023-0155 |
[3] | LI Tao, ZHANG Kan, YANG Wenyu, LIU Lu, ZHENG Xuan, ZHANG Fan, HU Yi. Clinical Application of Immune Checkpoint Inhibitors CTLA-4 in Solid Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 652-659. DOI: 10.12290/xhyxzz.2022-0617 |
[4] | WANG Shuo, DENG Yuntian, PENG Huan, ZHANG Xiangfeng. Progress in the Treatment of Non-small Cell Lung Cancer with Immune Checkpoint Inhibitors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 409-415. DOI: 10.12290/xhyxzz.2022-0151 |
[5] | LI Linrong, LI Yan, SUN Qiang. Clinical Trials and Current Progress in the Treatment of Triple-negative Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 177-183. DOI: 10.12290/xhyxzz.2022-0085 |
[6] | LUO Xiangchong, WANG Zhouqing, LI Qiongyan, MAO Guibing, AN Le, ZHU Jiahong, TAO E'hong, SUN Lifei, WANG Shengfei, LI Gaofeng. Pharmacological Effects and Clinical Evaluation of PD-1 Inhibitor of Tislelizumab in the Treatment of Advanced Malignant Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 679-686. DOI: 10.12290/xhyxzz.2021-0691 |
[7] | LUO Yanwen, ZHU Qingli. Application of Radiomics in Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 983-988. DOI: 10.12290/xhyxzz.2021-0011 |
[8] | HUA Yuwei, ZHAO Lin. Diagnosis and Management of Immunotherapy-related Liver Toxicity[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 798-806. DOI: 10.12290/xhyxzz.2021-0138 |
[9] | Mei GUAN, Chun-mei BAI. Medical Treatment for Biliary Tract Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 325-333. DOI: 10.3969/j.issn.1674-9081.20190247 |
[10] | Han-zhong LI, Yu-shi ZHANG, Guo-yang ZHENG. Commentary on and Expectation of Tumor Immunotherapy[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 289-294. DOI: 10.3969/j.issn.1674-9081.2018.04.001 |