LI Tao, ZHANG Kan, YANG Wenyu, LIU Lu, ZHENG Xuan, ZHANG Fan, HU Yi. Clinical Application of Immune Checkpoint Inhibitors CTLA-4 in Solid Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 652-659. DOI: 10.12290/xhyxzz.2022-0617
Citation: LI Tao, ZHANG Kan, YANG Wenyu, LIU Lu, ZHENG Xuan, ZHANG Fan, HU Yi. Clinical Application of Immune Checkpoint Inhibitors CTLA-4 in Solid Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 652-659. DOI: 10.12290/xhyxzz.2022-0617

Clinical Application of Immune Checkpoint Inhibitors CTLA-4 in Solid Tumors

Funds: 

Special Key Project of National Health Commission of China GWJJ2021100304

More Information
  • Corresponding author:

    HU Yi, E-mail: huyi301zlxb@sina.com

  • Received Date: October 23, 2022
  • Accepted Date: December 11, 2022
  • Issue Publish Date: May 29, 2023
  • In recent years, immunotherapy has become a new method for solid tumor treatment, and a large number of immune preparations have been developed and applied in clinical practice. Among them, immune checkpoint inhibitors (ICIs) are widely used, ushering in a new era for tumor treatment. In particular, cytotoxic T-lymphocyte-associated protein 4(CTLA-4), as a representative drug, enriches tumor immunotherapy methods and opens up a new treatment mode of dual immunotherapy. This article reviews the clinical application progress of CTLA-4 in the treatment of advanced solid tumors, with the hope of providing reference for immunotherapy of tumors.
  • [1]
    Hanahan D, Weinberg RA. Hallmarks of cancer: the next generation[J]. Cell, 2011, 144: 646-674. DOI: 10.1016/j.cell.2011.02.013
    [2]
    Hanahan D. Hallmarks of Cancer: New Dimensions[J]. Cancer Discov, 2022, 12: 31-46. DOI: 10.1158/2159-8290.CD-21-1059
    [3]
    Ephraim R, Fraser S, Nurgali K, et al. Checkpoint Markers and Tumor Microenvironment: What Do We Know?[J]. Cancers (Basel), 2022, 14: 3788. DOI: 10.3390/cancers14153788
    [4]
    Maruhashi T, Sugiura D, Okazaki IM, et al. LAG-3: from molecular functions to clinical applications[J]. J Immunother Cancer, 2020, 8: e001014. DOI: 10.1136/jitc-2020-001014
    [5]
    Freed-Pastor WA, Lambert LJ, Ely ZA, et al. The CD155/TIGIT axis promotes and maintains immune evasion in neoantigen-expressing pancreatic cancer[J]. Cancer Cell, 2021, 39: 1342-1360. DOI: 10.1016/j.ccell.2021.07.007
    [6]
    Azuma M, Ito D, Yagita H, et al. B70 antigen is a second ligand for CTLA-4 and CD28[J]. Nature, 1993, 366: 76-79. DOI: 10.1038/366076a0
    [7]
    Krummel MF, Allison JP. CTLA-4 engagement inhibits IL-2 accumulation and cell cycle progression upon activation of resting T cells[J]. J Exp Med, 1996, 183: 2533-2540. DOI: 10.1084/jem.183.6.2533
    [8]
    Parry RV, Chemnitz JM, Frauwirth KA, et al. CTLA-4 and PD-1 receptors inhibit T-cell activation by distinct mechanisms[J]. Mol Cell Biol, 2005, 25: 9543-9553. DOI: 10.1128/MCB.25.21.9543-9553.2005
    [9]
    Ribas A. Releasing the Brakes on Cancer Immunotherapy[J]. N Engl J Med, 2015, 373: 1490-1492. DOI: 10.1056/NEJMp1510079
    [10]
    Takahashi T, Tagami T, Yamazaki S, et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4[J]. J Exp Med, 2000, 192: 303-310. DOI: 10.1084/jem.192.2.303
    [11]
    Qureshi OS, Zheng Y, Nakamura K, et al. Trans-endocytosis of CD80 and CD86: a molecular basis for the cell-extrinsic function of CTLA-4[J]. Science, 2011, 332: 600-603. DOI: 10.1126/science.1202947
    [12]
    Wei SC, Duffy CR, Allison JP. Fundamental Mechanisms of Immune Checkpoint Blockade Therapy[J]. Cancer Discov, 2018, 8: 1069-1086. DOI: 10.1158/2159-8290.CD-18-0367
    [13]
    Hou TZ, Qureshi OS, Wang CJ, et al. A transendocytosis model of CTLA-4 function predicts its suppressive behavior on regulatory T cells[J]. J Immunol, 2015, 194: 2148-2159. http://pubmed.ncbi.nlm.nih.gov/25632005/
    [14]
    Pedicord VA, Montalvo W, Leiner IM, et al. Single dose of anti-CTLA-4 enhances CD8+ T-cell memory formation, function, and maintenance[J]. Proc Natl Acad Sci USA, 2011, 108: 266-271. DOI: 10.1073/pnas.1016791108
    [15]
    Weber JS, Hamid O, Chasalow SD, et al. Ipilimumab increases activated T cells and enhances humoral immunity in patients with advanced melanoma[J]. J Immunother, 2012, 35: 89-97. DOI: 10.1097/CJI.0b013e31823aa41c
    [16]
    Selby MJ, Engelhardt JJ, Quigley M, et al. Anti-CTLA-4 antibodies of IgG2a isotype enhance antitumor activity through reduction of intratumoral regulatory T cells[J]. Cancer Immunol Res, 2013, 1: 32-42. DOI: 10.1158/2326-6066.CIR-13-0013
    [17]
    Sharma A, Subudhi SK, Blando J, et al. Anti-CTLA-4 Immunotherapy Does Not Deplete FOXP3(+) Regulatory T Cells (Tregs) in Human Cancers[J]. Clin Cancer Res, 2019, 25: 1233-1238. DOI: 10.1158/1078-0432.CCR-18-0762
    [18]
    Felix J, Lambert J, Roelens M, et al. Ipilimumab reshapes T cell memory subsets in melanoma patients with clinical response[J]. Oncoimmunology, 2016, 5: 1136045. DOI: 10.1080/2162402X.2015.1136045
    [19]
    Gubin MM, Esaulova E, Ward JP, et al. High-Dimensional Analysis Delineates Myeloid and Lymphoid Compartment Remodeling during Successful Immune-Checkpoint Cancer Therapy[J]. Cell, 2018, 175: 1014-1030. DOI: 10.1016/j.cell.2018.09.030
    [20]
    Rotte A. Combination of CTLA-4 and PD-1 blockers for treatment of cancer[J]. J Exp Clin Cancer Res, 2019, 38: 255. DOI: 10.1186/s13046-019-1259-z
    [21]
    Willsmore ZN, Coumbe B, Crescioli S, et al. Combined anti-PD-1 and anti-CTLA-4 checkpoint blockade: Treatment of melanoma and immune mechanisms of action[J]. Eur J Immunol, 2021, 51: 544-556. DOI: 10.1002/eji.202048747
    [22]
    McDermott D, Haanen J, Chen TT, et al. Efficacy and safety of ipilimumab in metastatic melanoma patients surviving more than 2 years following treatment in a phase Ⅲ trial (MDX010-20)[J]. Ann Oncol, 2013, 24: 2694-2698. DOI: 10.1093/annonc/mdt291
    [23]
    Eggermont AM, Chiarion-Sileni V, Grob JJ, et al. Adjuvant ipilimumab versus placebo after complete resection of high-risk stage Ⅲ melanoma (EORTC 18071): a randomised, double-blind, phase 3 trial[J]. Lancet Oncol, 2015, 16: 522-530. DOI: 10.1016/S1470-2045(15)70122-1
    [24]
    Hodi FS, Chiarion-Sileni V, Gonzalez R, et al. Nivolumab plus ipilimumab or nivolumab alone versus ipilimumab alone in advanced melanoma (CheckMate 067): 4-year outcomes of a multicentre, randomised, phase 3 trial[J]. Lancet Oncol, 2018, 19: 1480-1492. DOI: 10.1016/S1470-2045(18)30700-9
    [25]
    Motzer RJ, Tannir NM, McDermott DF, et al. Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma[J]. N Engl J Med, 2018, 378: 1277-1290. DOI: 10.1056/NEJMoa1712126
    [26]
    Reck M, Schenker M, Lee KH, et al. Nivolumab plus ipilimumab versus chemotherapy as first-line treatment in advanced non-small-cell lung cancer with high tumour mutational burden: patient-reported outcomes results from the randomised, open-label, phase Ⅲ CheckMate 227 trial[J]. Eur J Cancer, 2019, 116: 137-147. DOI: 10.1016/j.ejca.2019.05.008
    [27]
    Paz-Ares LG, Ramalingam SS, Ciuleanu TE, et al. First-Line Nivolumab Plus Ipilimumab in Advanced NSCLC: 4-Year Outcomes From the Randomized, Open-Label, Phase 3 CheckMate 227 Part 1 Trial[J]. J Thorac Oncol, 2022, 17: 289-308. DOI: 10.1016/j.jtho.2021.09.010
    [28]
    Paz-Ares L, Ciuleanu TE, Cobo M, et al. First-line nivolumab plus ipilimumab combined with two cycles of chemotherapy in patients with non-small-cell lung cancer (CheckMate 9LA): an international, randomised, open-label, phase 3 trial[J]. Lancet Oncol, 2021, 22: 198-211. DOI: 10.1016/S1470-2045(20)30641-0
    [29]
    Baas P, Scherpereel A, Nowak AK, et al. First-line nivolumab plus ipilimumab in unresectable malignant pleural mesothelioma (CheckMate 743): a multicentre, randomised, open-label, phase 3 trial[J]. Lancet, 2021, 397: 375-386. DOI: 10.1016/S0140-6736(20)32714-8
    [30]
    Kudo M. Durvalumab Plus Tremelimumab: A Novel Combination Immunotherapy for Unresectable Hepatocellular Carcinoma[J]. Liver Cancer, 2022, 11: 87-93. DOI: 10.1159/000523702
    [31]
    Overman MJ, McDermott R, Leach JL, et al. Nivolumab in patients with metastatic DNA mismatch repair-deficient or microsatellite instability-high colorectal cancer (CheckMate 142): an open-label, multicentre, phase 2 study[J]. Lancet Oncol, 2017, 18: 1182-1191. DOI: 10.1016/S1470-2045(17)30422-9
    [32]
    Yau T, Kang YK, Kim TY, et al. Efficacy and Safety of Nivolumab Plus Ipilimumab in Patients With Advanced Hepatocellular Carcinoma Previously Treated With Sorafenib: The CheckMate 040 Randomized Clinical Trial[J]. JAMA Oncol, 2020, 6: e204564. DOI: 10.1001/jamaoncol.2020.4564
    [33]
    朱军, 黄美金, 陈宏. 进展期胃癌免疫治疗的研究进展[J]. 癌症进展, 2022, 20: 1189-1193. https://www.cnki.com.cn/Article/CJFDTOTAL-AZJZ202212021.htm
    [34]
    Tarhini AA, Kang N, Lee SJ, et al. Immune adverse events (irAEs) with adjuvant ipilimumab in melanoma, use of immunosuppressants and association with outcome: ECOG-ACRIN E1609 study analysis[J]. J Immunother Cancer, 2021, 9: e002535. DOI: 10.1136/jitc-2021-002535
    [35]
    Govindan R, Szczesna A, Ahn MJ, et al. Phase Ⅲ Trial of Ipilimumab Combined With Paclitaxel and Carboplatin in Advanced Squamous Non-Small-Cell Lung Cancer[J]. J Clin Oncol, 2017, 35: 3449-3457. DOI: 10.1200/JCO.2016.71.7629
    [36]
    Kang S, Wang X, Zhang Y, et al. First-Line Treatments for Extensive-Stage Small-Cell Lung Cancer With Immune Checkpoint Inhibitors Plus Chemotherapy: A Network Meta-Analysis and Cost-Effectiveness Analysis[J]. Front Oncol, 2021, 11: 740091.
    [37]
    Yu J, Ma S, Tian S, et al. Systematic Construction and Validation of a Prognostic Model for Hepatocellular Carcinoma Based on Immune-Related Genes[J]. Front Cell Dev Biol, 2021, 9: 700553. DOI: 10.3389/fcell.2021.700553
    [38]
    Cedres S, Felip E. 3-Year CheckMate743 outcomes: ringing in immunotherapy for the treatment of malignant pleural mesothelioma[J]. Ann Oncol, 2022, 33: 457-459. DOI: 10.1016/j.annonc.2022.03.004
    [39]
    Takei S, Kawazoe A, Shitara K. The New Era of Immunotherapy in Gastric Cancer[J]. Cancers (Basel), 2022, 14: 1054. DOI: 10.3390/cancers14041054
    [40]
    Weiss SA, Kluger H. CheckMate-067: Raising the Bar for the Next Decade in Oncology[J]. J Clin Oncol, 2022, 40: 111-113. http://pubmed.ncbi.nlm.nih.gov/34855466/
    [41]
    Zhang X, Wu T, Cai X, et al. Neoadjuvant Immunotherapy for MSI-H/dMMR Locally Advanced Colorectal Cancer: New Strategies and Unveiled Opportunities[J]. Front Immunol, 2022, 13: 795972. DOI: 10.3389/fimmu.2022.795972
    [42]
    Cavillon A, Pouessel D, Houédé N, et al. Assessing Long-term Treatment Benefits Using Complementary Statistical Approaches: An In Silico Analysis of the Phase Ⅲ Keynote-045 and Checkmate-214 Immune Checkpoint Inhibitor Trials[J]. Eur Urol, 2023, 25: S0302-2838(23)02619-2.
    [43]
    Owonikoko TK, Park K, Govindan R, et al. Nivolumab and Ipilimumab as Maintenance Therapy in Extensive-Disease Small-Cell Lung Cancer: CheckMate 451[J]. J Clin Oncol, 2021, 39: 1349-1359. DOI: 10.1200/JCO.20.02212
    [44]
    Peters S, Pujol JL, Dafni U, et al. Consolidation nivolumab and ipilimumab versus observation in limited-disease small-cell lung cancer after chemo-radiotherapy-results from the randomised phase Ⅱ ETOP/IFCT 4-12 STIMULI trial[J]. Ann Oncol, 2022, 33: 67-79. DOI: 10.1016/j.annonc.2021.09.011
    [45]
    Mariniello A, Novello S, Scagliotti GV, et al. Double immune checkpoint blockade in advanced NSCLC[J]. Crit Rev Oncol Hematol, 2020, 152: 102980. DOI: 10.1016/j.critrevonc.2020.102980
    [46]
    Rizvi NA, Cho BC, Reinmuth N, et al. Durvalumab With or Without Tremelimumab vs Standard Chemotherapy in First-line Treatment of Metastatic Non-Small Cell Lung Cancer: The MYSTIC Phase 3 Randomized Clinical Trial[J]. JAMA Oncol, 2020, 6: 661-674. DOI: 10.1001/jamaoncol.2020.0237
    [47]
    Boyer M, Şendur M, Rodríguez-Abreu D, et al. Pembrolizumab Plus Ipilimumab or Placebo for Metastatic Non-Small-Cell Lung Cancer With PD-L1 Tumor Proportion Score ≥ 50%: Randomized, Double-Blind Phase Ⅲ KEYNOTE-598 Study[J]. J Clin Oncol, 2021, 39: 2327-2338. DOI: 10.1200/JCO.20.03579
    [48]
    Lee JY, Lee HT, Shin W, et al. Structural basis of checkpoint blockade by monoclonal antibodies in cancer immunotherapy[J]. Nat Commun, 2016, 7: 13354. DOI: 10.1038/ncomms13354
    [49]
    He M, Chai Y, Qi J, et al. Remarkably similar CTLA-4 binding properties of therapeutic ipilimumab and tremelimumab antibodies[J]. Oncotarget, 2017, 8: 67129-67139. DOI: 10.18632/oncotarget.18004
    [50]
    Ramagopal UA, Liu W, Garrett-Thomson SC, et al. Structural basis for cancer immunotherapy by the first-in-class checkpoint inhibitor ipilimumab[J]. Proc Natl Acad Sci USA, 2017, 114: E4223-E4232. http://europepmc.org/articles/PMC5448203/pdf/pnas.201617941.pdf
    [51]
    左乔竹, 覃文新. CTLA-4和PD-1信号通路在实体瘤治疗中的研究进展[J]. 生命科学, 2017, 29: 713-721. https://www.cnki.com.cn/Article/CJFDTOTAL-SMKX201708002.htm

Catalog

    Article Metrics

    Article views PDF downloads Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!