Citation: | WEN Xuejun, ZHOU Wuhao, GUO Zhide, ZHANG Xianzhong. Integrin αvβ3 Targeted Radiopharmaceutical 99mTc-RGD Combined with Anti-PD-L1 mAb to Enhance the Anti-tumor Effect in Tumor Immunotherapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 766-773. DOI: 10.12290/xhyxzz.2023-0155 |
[1] |
Sung H, Ferlay J, Siegel RL, et al. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. Ca Cancer J Clin, 2021, 71: 209-249. DOI: 10.3322/caac.21660
|
[2] |
Das S, Al-Toubah T, El-Haddad G, et al. Lu-177-DOTA-TATE for the treatment of gastroenteropancreatic neuroendocrine tumors[J]. Expert Rev Gastroent, 2019, 13: 1023-1031. DOI: 10.1080/17474124.2019.1685381
|
[3] |
Hennrich U, Eder M. [Lu-177] Lu-PSMA-617 (Pluvicto (TM)): The First FDA-Approved Radiotherapeutical for Treatment of Prostate Cancer[J]. Pharmaceuticals, 2022, 15: 1292. DOI: 10.3390/ph15101292
|
[4] |
Wen XJ, Zeng XY, Shing CR, et al. PD-L1-Targeted Radionuclide Therapy Combined with alpha PD-L1 Antibody Immunotherapy Synergistically Improves the Antitumor Effect[J]. Mol Pharmaceut, 2022, 19: 3612-3622. DOI: 10.1021/acs.molpharmaceut.2c00281
|
[5] |
Wen XJ, Zeng XY, Shi CR, et al. Optimum Combination of Radiopharmaceuticals-Based Targeting-Triggering-Therapy Effect and PD-L1 Blockade Immunotherapy[J]. Adv Therap, 2023, 6: 22001
|
[6] |
Gutfilen B, Al Souza S, Valentini G. Copper-64: a real theranostic agent[J]. Drug Des Dev Ther, 2018, 12: 3235-3245. DOI: 10.2147/DDDT.S170879
|
[7] |
Wen XJ, Zeng XY, Liu J, et al. Synergism of Cu-64-Labeled RGD with Anti-PD-L1 Immunotherapy for the Long-Acting Antitumor Effect[J]. Bioconjugate Chem, 2022, 33: 2170-2179. DOI: 10.1021/acs.bioconjchem.2c00408
|
[8] |
Wen XJ, Shi CR, Zeng XY, et al. A Paradigm of Cancer Immunotherapy Based on 2-[18F] FDG and Anti-PD-L1 mAb Combination to Enhance the Antitumor Effect[J]. Clin Cancer Res, 2022, 28: 2923-2937. DOI: 10.1158/1078-0432.CCR-22-0159
|
[9] |
Niu G, Chen XY. Why Integrin as a Primary Target for Imaging and Therapy[J]. Theranostics, 2011, 1: 30-47. DOI: 10.7150/thno/v01p0030
|
[10] |
Hamidi H, Ivaska J. Every step of the way: integrins in cancer progression and metastasis[J]. Nat Rev Cancer, 2018, 18: 532-547.
|
[11] |
Zhou Y, Kim YS, Chakraborty S, et al. 99mTc-Labeled Cyclic RGD Peptides for Noninvasive Monitoring of Tumor Integrin αvβ3 Expression[J]. Mol Imaging, 2011, 10: 386-397.
|
[12] |
Zhou Y, Kim YS, Lu X, et al. Evaluation of 99mTc-labeled cyclic RGD dimers: impact of cyclic RGD peptides and 99mTc chelates on biological properties[J]. Bioconjug Chem, 2012, 23: 586-595. DOI: 10.1021/bc200631g
|
[13] |
Baskar R, Lee K A, Yeo R, et al. Cancer and Radiation Therapy: Current Advances and Future Directions[J]. Int J Med Sci, 2012, 9: 193-199. DOI: 10.7150/ijms.3635
|
[14] |
Norouzi S, Gorgi Valokala M, Mosaffa F, et al. Crosstalk in cancer resistance and metastasis[J]. Crit Rev Oncol Hematol, 2018, 132: 145-153. DOI: 10.1016/j.critrevonc.2018.09.017
|
[15] |
Kornepati AVR, Vadlamudi RK, Curiel TJ. Programmed death ligand 1 signals in cancer cells[J]. Nat Rev Cancer, 2022, 22: 190. DOI: 10.1038/s41568-022-00445-6
|
[16] |
Topalian SL, Taube JM, Pardoll DM. Neoadjuvant checkpoint blockade for cancer immunotherapy[J]. Science, 2020, 367: eaax0182. DOI: 10.1126/science.aax0182
|
[17] |
de Miguel M, Calvo E. Clinical Challenges of Immune Checkpoint Inhibitors[J]. Cancer Cell, 2020, 38: 326-333. DOI: 10.1016/j.ccell.2020.07.004
|
1. |
李娟娟,王菲. 子痫前期患者胎盘组织中整合素avβ3及转化生长因子β1的表达情况及意义. 内蒙古医科大学学报. 2024(02): 164-167 .
![]() |