Citation: | Yue-kun WANG, Peng-hao LIU, Yu WANG, Wen-bin MA. Single-cell Sequencing and Its Prospect in the Management of Brain Malignant Tumor[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 606-614. DOI: 10.3969/j.issn.1674-9081.2020.05.018 |
[1] |
Goodwin S, Mcpherson JD, Mccombie WR. Coming of age: ten years of next-generation sequencing technologies[J]. Nat Rev Genet, 2016, 17: 333-351. https://pubmed.ncbi.nlm.nih.gov/27184599/
|
[2] |
Head SR, Komori HK, Lamere SA, et al. Libraryconstruction for next-generation sequencing: overviews and challenges [J]. Biotechniques, 2014, 56:61-64, 66, 68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351865/
|
[3] |
Kang YB, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients[J]. Cancer Cell, 2013, 23: 573-581. DOI: 10.1016/j.ccr.2013.04.017
|
[4] |
Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases[J]. Clin Cancer Res, 2004, 10: 6897-6904. DOI: 10.1158/1078-0432.CCR-04-0378
|
[5] |
Zhang XY, Marjani SL, Hu ZY, et al. Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects[J]. Cancer Res, 2016, 76: 1305-1312. DOI: 10.1158/0008-5472.CAN-15-1907
|
[6] |
Riethdorf S, O'flaherty L, Hille C, et al. Clinical applica-tions of the CellSearch platform in cancer patients[J]. Adv Drug Deliv Rev, 2018, 125:102-121. DOI: 10.1016/j.addr.2018.01.011
|
[7] |
Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing[J]. Nature, 2011, 472: 90-94. DOI: 10.1038/nature09807
|
[8] |
Dean FB, Hosono S, Fang LH, et al. Comprehensive human genome amplification using multiple displacement amplifica-tion[J]. Proc Natl Acad Sci U S A, 2002, 99: 5261-5266. DOI: 10.1073/pnas.082089499
|
[9] |
Chen MF, Song PF, Zou D, et al. Comparison of Multiple Displacement Amplification (MDA) and Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) in Single-Cell Sequencing[J]. PLoS One, 2014, 9: e114520. DOI: 10.1371/journal.pone.0114520
|
[10] |
Hou Y, Wu K, Shi XL, et al. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing[J]. Gigascience, 2015, 4:37. DOI: 10.1186/s13742-015-0068-3
|
[11] |
Wang Y, Waters J, Leung ML, et al. Clonal Evolution in Breast Cancer Revealed by Single Nucleus Genome Sequencing[J]. Nature, 2014, 512: 155-160. DOI: 10.1038/nature13600
|
[12] |
Cole C, Byrne A, Beaudin AE, et al. Tn5Prime, a Tn5 based 5′ capture method for single cell RNA-seq[J]. Nucleic Acids Res, 2018, 46: e62. DOI: 10.1093/nar/gky182
|
[13] |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161: 1202-1214. DOI: 10.1016/j.cell.2015.05.002
|
[14] |
Smallwood SA, Lee HJ, Angermueller C, et al. Single-Cell Genome-Wide Bisulfite Sequencing for Assessing Epigenetic Heterogeneity[J]. Nat Methods, 2014, 11: 817-820. DOI: 10.1038/nmeth.3035
|
[15] |
Guo HS, Zhu P, Guo F, et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing[J]. Nat Protoc, 2015, 10:645-659. DOI: 10.1038/nprot.2015.039
|
[16] |
Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523: 486-490. DOI: 10.1038/nature14590
|
[17] |
Nagano T, Lubling Y, Stevens TJ, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure[J]. Nature, 2013, 502:59-64. DOI: 10.1038/nature12593
|
[18] |
Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells[J]. Elife, 2017, 6:e23203. doi: 10.7554/eLife.23203.
|
[19] |
Zhang K, Huang K, Luo Y, et al. Identification and functional analysis of long non-coding RNAs in mouse cleavage stage embryonic development based on single cell transcriptome data[J]. BMC Genomics, 2014, 15: 845. DOI: 10.1186/1471-2164-15-845
|
[20] |
Hayashi T, Ozaki H, Sasagawa Y, et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs[J]. Nat Commun, 2018, 9: 619. DOI: 10.1038/s41467-018-02866-0
|
[21] |
Faridani OR, Abdullayev I, Hagemann-Jensen M, et al. Single-cell sequencing of the small-RNA transcriptome[J]. Nat Biotechnol, 2016, 34:1264-1266. DOI: 10.1038/nbt.3701
|
[22] |
Han L, Zi XY, Garmire LX, et al. Co-detection and sequencing of genes and transcripts from the same single cells facilitated by a microfluidics platform[J]. Sci Rep, 2014, 4:6485. doi: 10.1038/srep06485.
|
[23] |
Yu M, Bardia A, Wittner BS, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition[J]. Science, 2013, 339: 580-584. DOI: 10.1126/science.1228522
|
[24] |
Miyamoto DT, Zheng Y, Wittner BS, et al. RNA-Seq of Single Prostate CTCs Implicates Noncanonical Wnt Signaling in Antiandrogen Resistance[J]. Science, 2015, 349:1351-1356. DOI: 10.1126/science.aab0917
|
[25] |
Gao Y, Ni XH, Guo H, et al. Single-cell sequencing deciphers a convergent evolution of copy number alterations from primary to circulating tumor cells[J]. Genome Res, 2017, 27: 1312-1322. DOI: 10.1101/gr.216788.116
|
[26] |
Kim KT, Lee HW, Lee HO, et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells[J]. Genome Biol, 2015, 16: 127. DOI: 10.1186/s13059-015-0692-3
|
[27] |
Hou Y, Guo HH, Cao C, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas[J]. Cell Res, 2016, 26: 304-319. DOI: 10.1038/cr.2016.23
|
[28] |
吴海竞, 付思祺, 李倩文, 等.黑色素瘤的生物标志物:从基因组学到表观遗传学[J].协和医学杂志, 2018, 9: 60-68. http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_xhyx201801014
WU HJ, FU SQ, LI QW, et al. Biomarkers of Melanoma: from Genetics to Epigenetics[J]. Med J PUMCH, 2018, 9:60-68. http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_xhyx201801014
|
[29] |
韩序, 楼文晖.胰腺神经内分泌肿瘤病因学及基因分型[J].协和医学杂志, 2020, 11: 377-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx202004004
Han X, Lou WH. Advances in Research on Genotyping and the Molecular Mechanism of Pancreatic Neuroendocrine Neoplasias[J]. Med J PUMCH, 2020, 11:377-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx202004004
|
[30] |
Xu X, Hou Y, Yin XY, et al. Single-Cell Exome Sequenc-ing Reveals Single-Nucleotide Mutation Characteristics of a Kidney Tumor[J]. Cell, 2012, 148: 886-895. DOI: 10.1016/j.cell.2012.02.025
|
[31] |
Yang Z, Li C, Fan ZS, et al. Single-cell Sequencing Reveals Variants in ARID1A, GPRC5A and MLL2 Driving Self-renewal of Human Bladder Cancer Stem Cells[J]. Eur Urol, 2017, 71: 8-12. DOI: 10.1016/j.eururo.2016.06.025
|
[32] |
Liu HW, Yang Q, Xiong Y, et al. Improved Prognostic Prediction of Glioblastoma using a PAS Detected from Single-cell RNA-seq[J]. J Cancer, 2020, 11: 3751-3761. DOI: 10.7150/jca.44034
|
[33] |
Demeulemeester J, Kumar P, Møller EK, et al. Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing[J]. Genome Biol, 2016, 17:250. DOI: 10.1186/s13059-016-1109-7
|
[34] |
Puram SV, Tirosh I, Parikh AS, et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer[J]. Cell, 2017, 171: 1611-1624.e24. DOI: 10.1016/j.cell.2017.10.044
|
[35] |
Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq[J]. Science, 2016, 352: 189-196. DOI: 10.1126/science.aad0501
|
[36] |
Zheng C, Zheng L, Yoo JK, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing[J]. Cell, 2017, 169: 1342-1356.e16. DOI: 10.1016/j.cell.2017.05.035
|
[37] |
Nirschl CJ, Suárez-Fariñas M, Izar B, et al. IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment[J]. Cell, 2017, 170: 127-141.e15. DOI: 10.1016/j.cell.2017.06.016
|
[38] |
Schulz M, Michels B, Niesel K, et al. Cellular and Molecular Changes of Brain Metastases-Associated Myeloid Cells during Disease Progression and Therapeutic Response[J]. Iscience, 2020, 23: 101178. DOI: 10.1016/j.isci.2020.101178
|
[39] |
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131: 803-820. DOI: 10.1007/s00401-016-1545-1
|
[40] |
Felsberg J, Hentschel B, Kaulich K, et al. Epidermal Growth Factor Receptor Variant Ⅲ (EGFRvⅢ) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors[J]. Clin Cancer Rese, 2017, 23:6846-6855. DOI: 10.1158/1078-0432.CCR-17-0890
|
[41] |
Pentsova EI, Shah RH, Tang J, et al. Evaluating Cancer of the Central Nervous System Through Next-Generation Sequencing of Cerebrospinal Fluid[J]. J Clin Oncol, 2016, 34: 2404-2415. DOI: 10.1200/JCO.2016.66.6487
|
[42] |
Soffietti R, Abacioglu U, Baumert B, et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO)[J]. Neuro Oncol, 2017, 19: 162-174. DOI: 10.1093/neuonc/now241
|
[43] |
Yang JJ, Zhou CC, Huang YS, et al. Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised control-led trial[J]. Lancet Respirat Med, 2017, 5: 707-716. DOI: 10.1016/S2213-2600(17)30262-X
|
[44] |
Brastianos PK, Carter SL, Santagata S, et al. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets[J]. Cancer Dis, 2015, 5: 1164-1177. DOI: 10.1158/2159-8290.CD-15-0369
|
[45] |
Euskirchen P, Radke J, Schmidt MS, et al. Cellular heterogeneity contributes to subtype-specific expression of ZEB1 in human glioblastoma[J]. PLoS One, 2017, 12: e0185376. DOI: 10.1371/journal.pone.0185376
|
[46] |
Francis JM, Zhang CZ, Maire CL, et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing[J]. Cancer Dis, 2014, 4: 956-971. DOI: 10.1158/2159-8290.CD-13-0879
|
[47] |
Chen XL, Wen Q, Stucky A, et al. Relapse pathway of glioblastoma revealed by single-cell molecular analysis[J]. Carcinogenesis, 2018, 39: 931-936. DOI: 10.1093/carcin/bgy052
|
[48] |
Lv DK, Wang X, Dong J, et al. Systematic characterization of lncRNAs' cell-to-cell expression heterogeneity in glioblastoma cells[J]. Oncotarget, 2016, 7: 18403-18414. DOI: 10.18632/oncotarget.7580
|
[49] |
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma[J]. Science, 2014, 344: 1396-1401. DOI: 10.1126/science.1254257
|
[50] |
Tirosh I, Venteicher AS, Hebert C, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma[J]. Nature, 2016, 539:309-313. DOI: 10.1038/nature20123
|
[51] |
Muller S, Liu SJ, Di Lullo E, et al. Single-cell sequencing maps gene expression to mutational phylogenies in PDGF- and EGF-driven gliomas[J]. Mol Syst Biol, 2016, 12: 889. DOI: 10.15252/msb.20166969
|
[52] |
Zhang W, Bao L, Yang SY, et al. Tumor-selective replica-tion herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells[J]. Oncotarget, 2016, 7: 39768-39783. DOI: 10.18632/oncotarget.9465
|
[53] |
Darmanis S, Sloan SA, Croote D, et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma[J]. Cell Rep, 2017, 21: 1399-1410. DOI: 10.1016/j.celrep.2017.10.030
|
[54] |
Venteicher AS, Tirosh I, Hebert C, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq[J]. Science, 2017, 355: eaai8478. DOI: 10.1126/science.aai8478
|
[55] |
Muller S, Kohanbash G, Liu SJ, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment[J]. Genome Biol, 2017, 18:234. DOI: 10.1186/s13059-017-1362-4
|
[56] |
Liu TR, Xu HN, Huang MG, et al. Circulating glioma cells exhibit stem cell-like properties[J]. Cancer Res, 2018, 78:6632-6642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ebbb4757746844cbd8de12a7714459d
|
[57] |
Ni XH, Zhou ML, Su Z, et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients[J]. Proc Natl Acad Sci U S A, 2013, 110: 21083-21088. DOI: 10.1073/pnas.1320659110
|
[1] | YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216 |
[2] | ZHANG Qian, WANG Haidong, YANG Huijun, JIN Fangmei, KAN Lili, BAI Songsong. Exploring the Mechanism and Intervention Strategies of Osteoporosis Based on the TLR4 Signaling Pathway[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0536 |
[3] | ZHANG Lu, LI Jian. Castleman Disease in China: State-of-the-art Technology Before the Era of IL-6 Targeted Therapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 911-914. DOI: 10.12290/xhyxzz.2023-0227 |
[4] | LIU Yuan, ZHAO Lin. Update and Interpretation of 2022 National Comprehensive Cancer Network Clinical Practice Guidelines for Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 999-1004. DOI: 10.12290/xhyxzz.2022-0271 |
[5] | Chinese Urological Doctor Association Adrenal Hypertension Surgery Collaborative Organization Adrenal Group, Chinese Society of Endocrinology PET group, Chinese Society of Nuclear Medicine. Consensus on Clinical Application of the CXCR4-targeted Imaging in the Diagnosis of Primary Aldosteronism(2022)[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 986-991. DOI: 10.12290/xhyxzz.2022-0584 |
[6] | XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231 |
[7] | Ya-ping LUO, Fang LI, Miao YU, Xiao-ping XING, Tai-ping ZHANG, Yu-pei ZHAO. Procedure Guideline of Glucagon-like Peptide-1 Receptor Positron Emission Tomography/Computed Tomography in Localizing Insulinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(4): 486-491. DOI: 10.3969/j.issn.1674-9081.2020.04.022 |
[8] | Ju QIAO, Feng LI, Chun-xia HE, Chao WU, Hong-zhong JIN. Effects of the Receptor-IgG Fc Fusion Protein of Recombinant Type Ⅱ Human Tumor Necrosis Factor-α on the Levels of Serum Adipokines in Psoriatic Patients: A Prospective Non-randomized Controlled Trial[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 243-248. DOI: 10.3969/j.issn.1674-9081.2019.03.010 |
[9] | Ling YUAN, Zheng-Yu JIN. Paul C. Hodges and the Early Development of Radiology in China[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(1): 91-94. DOI: 10.3969/j.issn.1674-9081.2019.01.015 |
1. |
周秋萍. 肿瘤新抗原疫苗的研究现状. 生物化工. 2020(05): 154-155+159 .
![]() | |
2. |
张家齐,刘磊,王桂阁,白文梁,李单青. 非小细胞肺癌跳跃性N2淋巴结转移的临床病理特点及预后. 协和医学杂志. 2019(03): 272-277 .
![]() | |
3. |
吕丹,王柏山,李娅丽,张程,金迪. 探讨肺癌患者肿瘤标志物CYFRA21-1、CEA、CA12-5、NSE与中医辨证分型之间的相关性. 辽宁中医药大学学报. 2019(06): 165-167 .
![]() | |
4. |
袁飞,王新乐,张灿,吴显宁,徐美青. NSCLC肿瘤及癌旁组织CD4~+和CD8~+T细胞PD-1的表达及意义. 安徽医科大学学报. 2019(08): 1295-1298 .
![]() | |
5. |
王贝茹,张思远,魏陈秋. 肿瘤免疫治疗的研究现状及应用. 中外医学研究. 2019(22): 184-186 .
![]() | |
6. |
汪梅花,赵康,葛繁梅. 成人急性髓系白血病患者化疗后发生院内感染的影响因素. 中国医刊. 2019(09): 993-995 .
![]() | |
7. |
王汉萍,宋鹏,斯晓燕,郭潇潇,李玥,周佳鑫,段炼,张丽,王孟昭,张力. 危重及难治性免疫检查点抑制剂相关毒性反应诊治建议及探索. 中国肺癌杂志. 2019(10): 605-614 .
![]() |