Citation: | Yue-kun WANG, Peng-hao LIU, Yu WANG, Wen-bin MA. Single-cell Sequencing and Its Prospect in the Management of Brain Malignant Tumor[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 606-614. DOI: 10.3969/j.issn.1674-9081.2020.05.018 |
[1] |
Goodwin S, Mcpherson JD, Mccombie WR. Coming of age: ten years of next-generation sequencing technologies[J]. Nat Rev Genet, 2016, 17: 333-351. https://pubmed.ncbi.nlm.nih.gov/27184599/
|
[2] |
Head SR, Komori HK, Lamere SA, et al. Libraryconstruction for next-generation sequencing: overviews and challenges [J]. Biotechniques, 2014, 56:61-64, 66, 68. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4351865/
|
[3] |
Kang YB, Pantel K. Tumor cell dissemination: emerging biological insights from animal models and cancer patients[J]. Cancer Cell, 2013, 23: 573-581. DOI: 10.1016/j.ccr.2013.04.017
|
[4] |
Allard WJ, Matera J, Miller MC, et al. Tumor cells circulate in the peripheral blood of all major carcinomas but not in healthy subjects or patients with nonmalignant diseases[J]. Clin Cancer Res, 2004, 10: 6897-6904. DOI: 10.1158/1078-0432.CCR-04-0378
|
[5] |
Zhang XY, Marjani SL, Hu ZY, et al. Single-Cell Sequencing for Precise Cancer Research: Progress and Prospects[J]. Cancer Res, 2016, 76: 1305-1312. DOI: 10.1158/0008-5472.CAN-15-1907
|
[6] |
Riethdorf S, O'flaherty L, Hille C, et al. Clinical applica-tions of the CellSearch platform in cancer patients[J]. Adv Drug Deliv Rev, 2018, 125:102-121. DOI: 10.1016/j.addr.2018.01.011
|
[7] |
Navin N, Kendall J, Troge J, et al. Tumour evolution inferred by single-cell sequencing[J]. Nature, 2011, 472: 90-94. DOI: 10.1038/nature09807
|
[8] |
Dean FB, Hosono S, Fang LH, et al. Comprehensive human genome amplification using multiple displacement amplifica-tion[J]. Proc Natl Acad Sci U S A, 2002, 99: 5261-5266. DOI: 10.1073/pnas.082089499
|
[9] |
Chen MF, Song PF, Zou D, et al. Comparison of Multiple Displacement Amplification (MDA) and Multiple Annealing and Looping-Based Amplification Cycles (MALBAC) in Single-Cell Sequencing[J]. PLoS One, 2014, 9: e114520. DOI: 10.1371/journal.pone.0114520
|
[10] |
Hou Y, Wu K, Shi XL, et al. Comparison of variations detection between whole-genome amplification methods used in single-cell resequencing[J]. Gigascience, 2015, 4:37. DOI: 10.1186/s13742-015-0068-3
|
[11] |
Wang Y, Waters J, Leung ML, et al. Clonal Evolution in Breast Cancer Revealed by Single Nucleus Genome Sequencing[J]. Nature, 2014, 512: 155-160. DOI: 10.1038/nature13600
|
[12] |
Cole C, Byrne A, Beaudin AE, et al. Tn5Prime, a Tn5 based 5′ capture method for single cell RNA-seq[J]. Nucleic Acids Res, 2018, 46: e62. DOI: 10.1093/nar/gky182
|
[13] |
Macosko EZ, Basu A, Satija R, et al. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets[J]. Cell, 2015, 161: 1202-1214. DOI: 10.1016/j.cell.2015.05.002
|
[14] |
Smallwood SA, Lee HJ, Angermueller C, et al. Single-Cell Genome-Wide Bisulfite Sequencing for Assessing Epigenetic Heterogeneity[J]. Nat Methods, 2014, 11: 817-820. DOI: 10.1038/nmeth.3035
|
[15] |
Guo HS, Zhu P, Guo F, et al. Profiling DNA methylome landscapes of mammalian cells with single-cell reduced-representation bisulfite sequencing[J]. Nat Protoc, 2015, 10:645-659. DOI: 10.1038/nprot.2015.039
|
[16] |
Buenrostro JD, Wu B, Litzenburger UM, et al. Single-cell chromatin accessibility reveals principles of regulatory variation[J]. Nature, 2015, 523: 486-490. DOI: 10.1038/nature14590
|
[17] |
Nagano T, Lubling Y, Stevens TJ, et al. Single-cell Hi-C reveals cell-to-cell variability in chromosome structure[J]. Nature, 2013, 502:59-64. DOI: 10.1038/nature12593
|
[18] |
Pott S. Simultaneous measurement of chromatin accessibility, DNA methylation, and nucleosome phasing in single cells[J]. Elife, 2017, 6:e23203. doi: 10.7554/eLife.23203.
|
[19] |
Zhang K, Huang K, Luo Y, et al. Identification and functional analysis of long non-coding RNAs in mouse cleavage stage embryonic development based on single cell transcriptome data[J]. BMC Genomics, 2014, 15: 845. DOI: 10.1186/1471-2164-15-845
|
[20] |
Hayashi T, Ozaki H, Sasagawa Y, et al. Single-cell full-length total RNA sequencing uncovers dynamics of recursive splicing and enhancer RNAs[J]. Nat Commun, 2018, 9: 619. DOI: 10.1038/s41467-018-02866-0
|
[21] |
Faridani OR, Abdullayev I, Hagemann-Jensen M, et al. Single-cell sequencing of the small-RNA transcriptome[J]. Nat Biotechnol, 2016, 34:1264-1266. DOI: 10.1038/nbt.3701
|
[22] |
Han L, Zi XY, Garmire LX, et al. Co-detection and sequencing of genes and transcripts from the same single cells facilitated by a microfluidics platform[J]. Sci Rep, 2014, 4:6485. doi: 10.1038/srep06485.
|
[23] |
Yu M, Bardia A, Wittner BS, et al. Circulating breast tumor cells exhibit dynamic changes in epithelial and mesenchymal composition[J]. Science, 2013, 339: 580-584. DOI: 10.1126/science.1228522
|
[24] |
Miyamoto DT, Zheng Y, Wittner BS, et al. RNA-Seq of Single Prostate CTCs Implicates Noncanonical Wnt Signaling in Antiandrogen Resistance[J]. Science, 2015, 349:1351-1356. DOI: 10.1126/science.aab0917
|
[25] |
Gao Y, Ni XH, Guo H, et al. Single-cell sequencing deciphers a convergent evolution of copy number alterations from primary to circulating tumor cells[J]. Genome Res, 2017, 27: 1312-1322. DOI: 10.1101/gr.216788.116
|
[26] |
Kim KT, Lee HW, Lee HO, et al. Single-cell mRNA sequencing identifies subclonal heterogeneity in anti-cancer drug responses of lung adenocarcinoma cells[J]. Genome Biol, 2015, 16: 127. DOI: 10.1186/s13059-015-0692-3
|
[27] |
Hou Y, Guo HH, Cao C, et al. Single-cell triple omics sequencing reveals genetic, epigenetic, and transcriptomic heterogeneity in hepatocellular carcinomas[J]. Cell Res, 2016, 26: 304-319. DOI: 10.1038/cr.2016.23
|
[28] |
吴海竞, 付思祺, 李倩文, 等.黑色素瘤的生物标志物:从基因组学到表观遗传学[J].协和医学杂志, 2018, 9: 60-68. http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_xhyx201801014
WU HJ, FU SQ, LI QW, et al. Biomarkers of Melanoma: from Genetics to Epigenetics[J]. Med J PUMCH, 2018, 9:60-68. http://med.wanfangdata.com.cn/Paper/Detail?id=PeriodicalPaper_xhyx201801014
|
[29] |
韩序, 楼文晖.胰腺神经内分泌肿瘤病因学及基因分型[J].协和医学杂志, 2020, 11: 377-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx202004004
Han X, Lou WH. Advances in Research on Genotyping and the Molecular Mechanism of Pancreatic Neuroendocrine Neoplasias[J]. Med J PUMCH, 2020, 11:377-382. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=xhyx202004004
|
[30] |
Xu X, Hou Y, Yin XY, et al. Single-Cell Exome Sequenc-ing Reveals Single-Nucleotide Mutation Characteristics of a Kidney Tumor[J]. Cell, 2012, 148: 886-895. DOI: 10.1016/j.cell.2012.02.025
|
[31] |
Yang Z, Li C, Fan ZS, et al. Single-cell Sequencing Reveals Variants in ARID1A, GPRC5A and MLL2 Driving Self-renewal of Human Bladder Cancer Stem Cells[J]. Eur Urol, 2017, 71: 8-12. DOI: 10.1016/j.eururo.2016.06.025
|
[32] |
Liu HW, Yang Q, Xiong Y, et al. Improved Prognostic Prediction of Glioblastoma using a PAS Detected from Single-cell RNA-seq[J]. J Cancer, 2020, 11: 3751-3761. DOI: 10.7150/jca.44034
|
[33] |
Demeulemeester J, Kumar P, Møller EK, et al. Tracing the origin of disseminated tumor cells in breast cancer using single-cell sequencing[J]. Genome Biol, 2016, 17:250. DOI: 10.1186/s13059-016-1109-7
|
[34] |
Puram SV, Tirosh I, Parikh AS, et al. Single-Cell Transcriptomic Analysis of Primary and Metastatic Tumor Ecosystems in Head and Neck Cancer[J]. Cell, 2017, 171: 1611-1624.e24. DOI: 10.1016/j.cell.2017.10.044
|
[35] |
Tirosh I, Izar B, Prakadan SM, et al. Dissecting the multicellular ecosystem of metastatic melanoma by single-cell RNA-seq[J]. Science, 2016, 352: 189-196. DOI: 10.1126/science.aad0501
|
[36] |
Zheng C, Zheng L, Yoo JK, et al. Landscape of Infiltrating T Cells in Liver Cancer Revealed by Single-Cell Sequencing[J]. Cell, 2017, 169: 1342-1356.e16. DOI: 10.1016/j.cell.2017.05.035
|
[37] |
Nirschl CJ, Suárez-Fariñas M, Izar B, et al. IFNγ-Dependent Tissue-Immune Homeostasis Is Co-opted in the Tumor Microenvironment[J]. Cell, 2017, 170: 127-141.e15. DOI: 10.1016/j.cell.2017.06.016
|
[38] |
Schulz M, Michels B, Niesel K, et al. Cellular and Molecular Changes of Brain Metastases-Associated Myeloid Cells during Disease Progression and Therapeutic Response[J]. Iscience, 2020, 23: 101178. DOI: 10.1016/j.isci.2020.101178
|
[39] |
Louis DN, Perry A, Reifenberger G, et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary[J]. Acta Neuropathol, 2016, 131: 803-820. DOI: 10.1007/s00401-016-1545-1
|
[40] |
Felsberg J, Hentschel B, Kaulich K, et al. Epidermal Growth Factor Receptor Variant Ⅲ (EGFRvⅢ) Positivity in EGFR-Amplified Glioblastomas: Prognostic Role and Comparison between Primary and Recurrent Tumors[J]. Clin Cancer Rese, 2017, 23:6846-6855. DOI: 10.1158/1078-0432.CCR-17-0890
|
[41] |
Pentsova EI, Shah RH, Tang J, et al. Evaluating Cancer of the Central Nervous System Through Next-Generation Sequencing of Cerebrospinal Fluid[J]. J Clin Oncol, 2016, 34: 2404-2415. DOI: 10.1200/JCO.2016.66.6487
|
[42] |
Soffietti R, Abacioglu U, Baumert B, et al. Diagnosis and treatment of brain metastases from solid tumors: guidelines from the European Association of Neuro-Oncology (EANO)[J]. Neuro Oncol, 2017, 19: 162-174. DOI: 10.1093/neuonc/now241
|
[43] |
Yang JJ, Zhou CC, Huang YS, et al. Icotinib versus whole-brain irradiation in patients with EGFR-mutant non-small-cell lung cancer and multiple brain metastases (BRAIN): a multicentre, phase 3, open-label, parallel, randomised control-led trial[J]. Lancet Respirat Med, 2017, 5: 707-716. DOI: 10.1016/S2213-2600(17)30262-X
|
[44] |
Brastianos PK, Carter SL, Santagata S, et al. Genomic Characterization of Brain Metastases Reveals Branched Evolution and Potential Therapeutic Targets[J]. Cancer Dis, 2015, 5: 1164-1177. DOI: 10.1158/2159-8290.CD-15-0369
|
[45] |
Euskirchen P, Radke J, Schmidt MS, et al. Cellular heterogeneity contributes to subtype-specific expression of ZEB1 in human glioblastoma[J]. PLoS One, 2017, 12: e0185376. DOI: 10.1371/journal.pone.0185376
|
[46] |
Francis JM, Zhang CZ, Maire CL, et al. EGFR variant heterogeneity in glioblastoma resolved through single-nucleus sequencing[J]. Cancer Dis, 2014, 4: 956-971. DOI: 10.1158/2159-8290.CD-13-0879
|
[47] |
Chen XL, Wen Q, Stucky A, et al. Relapse pathway of glioblastoma revealed by single-cell molecular analysis[J]. Carcinogenesis, 2018, 39: 931-936. DOI: 10.1093/carcin/bgy052
|
[48] |
Lv DK, Wang X, Dong J, et al. Systematic characterization of lncRNAs' cell-to-cell expression heterogeneity in glioblastoma cells[J]. Oncotarget, 2016, 7: 18403-18414. DOI: 10.18632/oncotarget.7580
|
[49] |
Patel AP, Tirosh I, Trombetta JJ, et al. Single-cell RNA-seq highlights intratumoral heterogeneity in primary glioblastoma[J]. Science, 2014, 344: 1396-1401. DOI: 10.1126/science.1254257
|
[50] |
Tirosh I, Venteicher AS, Hebert C, et al. Single-cell RNA-seq supports a developmental hierarchy in human oligodendroglioma[J]. Nature, 2016, 539:309-313. DOI: 10.1038/nature20123
|
[51] |
Muller S, Liu SJ, Di Lullo E, et al. Single-cell sequencing maps gene expression to mutational phylogenies in PDGF- and EGF-driven gliomas[J]. Mol Syst Biol, 2016, 12: 889. DOI: 10.15252/msb.20166969
|
[52] |
Zhang W, Bao L, Yang SY, et al. Tumor-selective replica-tion herpes simplex virus-based technology significantly improves clinical detection and prognostication of viable circulating tumor cells[J]. Oncotarget, 2016, 7: 39768-39783. DOI: 10.18632/oncotarget.9465
|
[53] |
Darmanis S, Sloan SA, Croote D, et al. Single-Cell RNA-Seq Analysis of Infiltrating Neoplastic Cells at the Migrating Front of Human Glioblastoma[J]. Cell Rep, 2017, 21: 1399-1410. DOI: 10.1016/j.celrep.2017.10.030
|
[54] |
Venteicher AS, Tirosh I, Hebert C, et al. Decoupling genetics, lineages, and microenvironment in IDH-mutant gliomas by single-cell RNA-seq[J]. Science, 2017, 355: eaai8478. DOI: 10.1126/science.aai8478
|
[55] |
Muller S, Kohanbash G, Liu SJ, et al. Single-cell profiling of human gliomas reveals macrophage ontogeny as a basis for regional differences in macrophage activation in the tumor microenvironment[J]. Genome Biol, 2017, 18:234. DOI: 10.1186/s13059-017-1362-4
|
[56] |
Liu TR, Xu HN, Huang MG, et al. Circulating glioma cells exhibit stem cell-like properties[J]. Cancer Res, 2018, 78:6632-6642. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=2ebbb4757746844cbd8de12a7714459d
|
[57] |
Ni XH, Zhou ML, Su Z, et al. Reproducible copy number variation patterns among single circulating tumor cells of lung cancer patients[J]. Proc Natl Acad Sci U S A, 2013, 110: 21083-21088. DOI: 10.1073/pnas.1320659110
|
[1] | ZHANG Shan, LIU Jie. Interpretation of NCCN Clinical Practice Guidelines for Primary Cutaneous Lymphomas (Version 1.2024) Based on the Current Diagnosis and Treatment Status of China[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(5): 1029-1037. DOI: 10.12290/xhyxzz.2024-0605 |
[2] | SHI Yixin, WANG Yuekun, XING Hao, CHEN Wenlin, LIU Delin, ZHAO Binghao, YANG Tianrui, NIU Pei, WANG Yu, MA Wenbin. Diagnosis and Treatment Experience of Multidisciplinary Team for Brain Metastasis in Peking Union Medical College Hospital: A Summary of 159 Cases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 306-314. DOI: 10.12290/xhyxzz.2022-0268 |
[3] | MA Mingsheng, SONG Hongmei. Acceleration of Precision Medicine in Pediatric Rheumatic and Immunologic Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 229-233. DOI: 10.12290/xhyxzz.2023-0080 |
[4] | ZHANG Shan, LIU Zhaorui, LIU Jie. Relationship Between SerpinB9 and Tumors and Research Progress of SerpinB9 in Skin Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 852-857. DOI: 10.12290/xhyxzz.2021-0805 |
[5] | WANG Guochang, ZHU Zhaohui. Molecular Imaging-guided Precise Theranostics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 165-168. DOI: 10.12290/xhyxzz.2021-0773 |
[6] | CHEN Wen, ZHOU Zhou. Application of Genetic Testing in Precision Medicine for Coronary Heart Disease[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 445-449. DOI: 10.12290/xhyxzz.2021-0418 |
[7] | XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231 |
[8] | LIU Yan-hong, YE Qing. The Characteristics of the Construction and Development of Biobank in the Era of Precision Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 254-259. DOI: 10.3969/j.issn.1674-9081.2020.00.008 |
[9] | Wei WU, Yi-ning WANG, Jing-wen DAI, Zheng-yu JIN, Shu-yang ZHANG. New Clinical Diagnostic Pathway of Primary Cardiomyopathy: from High-resolution Imaging to Molecular Precision Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(1): 6-10. DOI: 10.3969/j.issn.1674-9081.2019.01.002 |
[10] | Bo ZHANG. Development of Pathology in Coming Era of Precision Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 117-121. DOI: 10.3969/j.issn.1674-9081.2017.03.007 |