CHEN Wenlin, WANG Yaning, XING Hao, LIANG Tingyu, SHI Yixin, WANG Hai, YANG Huiyu, LIU Qianshu, LI Junlin, GUO Xiaopeng, WANG Yu, MA Wenbin. Annual Research Progress of Glioma in China in 2021[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 760-767. DOI: 10.12290/xhyxzz.2022-0235
Citation: CHEN Wenlin, WANG Yaning, XING Hao, LIANG Tingyu, SHI Yixin, WANG Hai, YANG Huiyu, LIU Qianshu, LI Junlin, GUO Xiaopeng, WANG Yu, MA Wenbin. Annual Research Progress of Glioma in China in 2021[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 760-767. DOI: 10.12290/xhyxzz.2022-0235

Annual Research Progress of Glioma in China in 2021

Funds: 

National Natural Science Foundation of China 82151302

Beijing Municipal Natural Science Foundation 7202150

Beijing Municipal Natural Science Foundation 19JCZDJC64200(Z)

Tsinghua University-Peking Union Medical College Hospital Initiative Scientific Research Program 2019ZLH101

More Information
  • Corresponding author:

    MA Wenbin, E-mail: mawb2001@hotmail.com

  • Received Date: April 25, 2022
  • Accepted Date: May 23, 2022
  • Available Online: June 12, 2022
  • Issue Publish Date: September 29, 2022
  • Glioma, the most prevalent primary malignant tumor of the central nervous system, has a high degree of malignancy and poor prognosis for patients. At present, the researches of glioma mainly focus on the investigation of the mechanism of tumor occurrence and the discovery of new therapeutic methods and agents. In-depth researches have also been conducted on the optimization of molecular pathological typing of glioma, improvement of diagnostic imaging techniques and formulation of comprehensive treatment guidelines. In this review, we summarize the achievements and important progress made by Chinese medical scientists in the field of glioma in 2021, and propose possible future research directions with the aim of providing reference for clinical research.
  • [1]
    Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71: 209-249. DOI: 10.3322/caac.21660
    [2]
    Chen F, Wendl MC, Wyczalkowski MA, et al. Moving pan-cancer studies from basic research toward the clinic[J]. Nat Cancer, 2021, 2: 879-890. DOI: 10.1038/s43018-021-00250-4
    [3]
    Stupp R, Hegi ME, Mason WP, et al. Effects of radiotherapy with concomitant and adjuvant temozolomide versus radiotherapy alone on survival in glioblastoma in a randomised phase Ⅲ study: 5-year analysis of the EORTC-NCIC trial[J]. Lancet Oncol, 2009, 10: 459-466. DOI: 10.1016/S1470-2045(09)70025-7
    [4]
    Stupp R, Taillibert S, Kanner A, et al. Effect of Tumor-Treating Fields Plus Maintenance Temozolomide vs Maintenance Temozolomide Alone on Survival in Patients With Glioblastoma: A Randomized Clinical Trial[J]. JAMA, 2017, 318: 2306-2316. DOI: 10.1001/jama.2017.18718
    [5]
    Louis DN, Perry A, Wesseling P, et al. The 2021 WHO Classification of Tumors of the Central Nervous System: a summary[J]. Neuro Oncol, 2021, 23: 1231-1251. DOI: 10.1093/neuonc/noab106
    [6]
    Wong QH, Li KK, Wang WW, et al. Molecular landscape of IDH-mutant primary astrocytoma Grade Ⅳ/glioblastomas[J]. Mod Pathol, 2021, 34: 1245-1260. DOI: 10.1038/s41379-021-00778-x
    [7]
    Jin L, Shi F, Chun Q, et al. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers[J]. Neuro Oncol, 2021, 23: 44-52. DOI: 10.1093/neuonc/noaa163
    [8]
    Wen PY, Packer RJ. The 2021 WHO Classification of Tumors of the Central Nervous System: clinical implications[J]. Neuro Oncol, 2021, 23: 1215-1217. DOI: 10.1093/neuonc/noab120
    [9]
    Mohile NA, Messersmith H, Gatson NT, et al. Therapy for Diffuse Astrocytic and Oligodendroglial Tumors in Adults: ASCO-SNO Guideline[J]. J Clin Oncol, 2022, 40: 403-426.
    [10]
    Jiang T, Nam DH, Ram Z, et al. Clinical practice guidelines for the management of adult diffuse gliomas[J]. Cancer Lett, 2021, 499: 60-72. DOI: 10.1016/j.canlet.2020.10.050
    [11]
    Gao A, Zhang H, Yan X, et al. Whole-Tumor Histogram Analysis of Multiple Diffusion Metrics for Glioma Genotyping[J]. Radiology, 2022, 302: 652-661. DOI: 10.1148/radiol.210820
    [12]
    Sun Q, Chen Y, Liang C, et al. Biologic Pathways Underlying Prognostic Radiomics Phenotypes from Paired MRI and RNA Sequencing in Glioblastoma[J]. Radiology, 2021, 301: 654-663. DOI: 10.1148/radiol.2021203281
    [13]
    Xie R, Wu Z, Zeng F, et al. Retro-enantio isomer of angiopep-2 assists nanoprobes across the blood-brain barrier for targeted magnetic resonance/fluorescence imaging of glio-blastoma[J]. Signal Transduct Target Ther, 2021, 6: 309. DOI: 10.1038/s41392-021-00724-y
    [14]
    Yang J, Zhao C, Lim J, et al. Structurally symmetric near-infrared fluorophore IRDye78-protein complex enables multimodal cancer imaging[J]. Theranostics, 2021, 11: 2534-2549. DOI: 10.7150/thno.54928
    [15]
    Li Z, Kong Z, Chen J, et al. (18)F-Boramino acid PET/CT in healthy volunteers and glioma patients[J]. Eur J Nucl Med Mol Imaging, 2021, 48: 3113-3121. DOI: 10.1007/s00259-021-05212-7
    [16]
    Zhang Y, Xi K, Fu X, et al. Versatile metal-phenolic network nanoparticles for multitargeted combination therapy and magnetic resonance tracing in glioblastoma[J]. Biomaterials, 2021, 278: 121163. DOI: 10.1016/j.biomaterials.2021.121163
    [17]
    Huang N, Li F, Zhang M, et al. An Upstream Open Reading Frame in Phosphatase and Tensin Homolog Encodes a Circuit Breaker of Lactate Metabolism[J]. Cell Metab, 2021, 33: 128-144. e9. DOI: 10.1016/j.cmet.2020.12.008
    [18]
    Wu X, Xiao S, Zhang M, et al. A novel protein encoded by circular SMO RNA is essential for Hedgehog signaling activation and glioblastoma tumorigenicity[J]. Genome Biol, 2021, 22: 33. DOI: 10.1186/s13059-020-02250-6
    [19]
    Wang X, Zhou R, Xiong Y, et al. Sequential fate-switches in stem-like cells drive the tumorigenic trajectory from human neural stem cells to malignant glioma[J]. Cell Res, 2021, 31: 684-702. DOI: 10.1038/s41422-020-00451-z
    [20]
    中国医师协会脑胶质瘤专业委员会, 中国抗癌协会脑胶质瘤专业委员会, 中国脑胶质瘤协作组. 成人丘脑胶质瘤手术治疗中国专家共识[J]. 临床神经外科杂志, 2022, 19: 1-10. DOI: 10.3969/j.issn.1672-7770.2022.01.001

    Society for NeuroOncology of China, Chinese Anti-Cancer Association Committee of the Glioma, Chinese Glioma Cooperative Group. Chinese experts consensus on surgical treatment for adult thalamus glioma[J]. Linchuang Shenjing Waike Zazhi, 2022, 19: 1-10. DOI: 10.3969/j.issn.1672-7770.2022.01.001
    [21]
    Niu X, Yang Y, Zhou X, et al. A prognostic nomogram for patients with newly diagnosed adult thalamic glioma in a surgical cohort[J]. Neuro Oncol, 2021, 23: 337-338. DOI: 10.1093/neuonc/noaa268
    [22]
    Hou Z, Zhang K, Liu X, et al. Molecular subtype impacts surgical resection in low-grade gliomas: A Chinese Glioma Genome Atlas database analysis[J]. Cancer Lett, 2021, 522: 14-21. DOI: 10.1016/j.canlet.2021.09.008
    [23]
    Lu J, Zhao Z, Zhang J, et al. Functional maps of direct electrical stimulation-induced speech arrest and anomia: a multicentre retrospective study[J]. Brain, 2021, 144: 2541-2553. DOI: 10.1093/brain/awab125
    [24]
    Sun R, Cuthbert H, Watts C. Fluorescence-Guided Surgery in the Surgical Treatment of Gliomas: Past, Present and Future[J]. Cancers (Basel), 2021, 13: 3508. DOI: 10.3390/cancers13143508
    [25]
    Gao XY, Zang J, Zheng MH, et al. Temozolomide Treatment Induces HMGB1 to Promote the Formation of Glioma Stem Cells via the TLR2/NEAT1/Wnt Pathway in Glioblastoma[J]. Front Cell Dev Biol, 2021, 9: 620883. DOI: 10.3389/fcell.2021.620883
    [26]
    Zheng Y, Liu L, Wang Y, et al. Glioblastoma stem cell (GSC)-derived PD-L1-containing exosomes activates AMPK/ULK1 pathway mediated autophagy to increase temozolomide-resistance in glioblastoma[J]. Cell Biosci, 2021, 11: 63. DOI: 10.1186/s13578-021-00575-8
    [27]
    Wang Z, Wang Y, Yang T, et al. Machine learning revealed stemness features and a novel stemness-based classification with appealing implications in discriminating the prognosis, immunotherapy and temozolomide responses of 906 glioblastoma patients[J]. Brief Bioinform, 2021, 22: bbab032. DOI: 10.1093/bib/bbab032
    [28]
    Li J, Kaneda MM, Ma J, et al. PI3Kγ inhibition suppresses microglia/TAM accumulation in glioblastoma microenvironment to promote exceptional temozolomide response[J]. Proc Natl Acad Sci U S A, 2021, 118: e2009290118. DOI: 10.1073/pnas.2009290118
    [29]
    Li Z, Meng X, Wu P, et al. Glioblastoma Cell-Derived lncRNA-Containing Exosomes Induce Microglia to Produce Complement C5, Promoting Chemotherapy Resistance[J]. Cancer Immunol Res, 2021, 9: 1383-1399. DOI: 10.1158/2326-6066.CIR-21-0258
    [30]
    Zhang XN, Yang KD, Chen C, et al. Pericytes augment glioblastoma cell resistance to temozolomide through CCL5-CCR5 paracrine signaling[J]. Cell Res, 2021, 31: 1072-1087. DOI: 10.1038/s41422-021-00528-3
    [31]
    Oldrini B, Vaquero-Siguero N, Mu Q, et al. MGMT genomic rearrangements contribute to chemotherapy resis-tance in gliomas[J]. Nat Commun, 2020, 11: 3883. DOI: 10.1038/s41467-020-17717-0
    [32]
    Shi J, Chen G, Dong X, et al. METTL3 Promotes the Resistance of Glioma to Temozolomide via Increasing MGMT and ANPG in a m6A Dependent Manner[J]. Front Oncol, 2021, 11: 702983. DOI: 10.3389/fonc.2021.702983
    [33]
    Li F, Chen S, Yu J, et al. Interplay of m6 A and histone modifications contributes to temozolomide resistance in glioblastoma[J]. Clin Transl Med, 2021, 11: e553.
    [34]
    Yuan Q, Yang W, Zhang S, et al. Inhibition of mitochondrial carrier homolog 2 (MTCH2) suppresses tumor invasion and enhances sensitivity to temozolomide in malignant glioma[J]. Mol Med, 2021, 27: 7.
    [35]
    Yang W, Yuan Q, Zhang S, et al. Elevated GIGYF2 expression suppresses tumor migration and enhances sensitivity to temozolomide in malignant glioma[J]. Cancer Gene Ther, 2022, 29: 750-757. DOI: 10.1038/s41417-021-00353-1
    [36]
    Wang K, Kievit FM, Chiarelli PA, et al. siRNA nanoparticle suppresses drug-resistant gene and prolongs survival in an orthotopic glioblastoma xenograft mouse model[J]. Adv Funct Mater, 2021, 31: 2007166. DOI: 10.1002/adfm.202007166
    [37]
    Yang Q, Zhou Y, Chen J, et al. Gene Therapy for Drug-Resistant Glioblastoma via Lipid-Polymer Hybrid Nanopar-ticles Combined with Focused Ultrasound[J]. Int J Nanomedicine, 2021, 16: 185-199. DOI: 10.2147/IJN.S286221
    [38]
    Liu Y, Bao Q, Chen Z, et al. Circumventing Drug Resistance Pathways with a Nanoparticle-Based Photodynamic Method[J]. Nano Lett, 2021, 21: 9115-9123. DOI: 10.1021/acs.nanolett.1c02803
    [39]
    Hu H, Mu Q, Bao Z, et al. Mutational Landscape of Secondary Glioblastoma Guides MET-Targeted Trial in Brain Tumor[J]. Cell, 2018, 175: 1665-1678. e1618. DOI: 10.1016/j.cell.2018.09.038
    [40]
    Wen PY, Stein A, van den Bent M, et al. Dabrafenib plus trametinib in patients with BRAF(V600E)-mutant low-grade and high-grade glioma (ROAR): a multicentre, open-label, single-arm, phase 2, basket trial[J]. Lancet Oncol, 2022, 23: 53-64. DOI: 10.1016/S1470-2045(21)00578-7
    [41]
    Yang Q, Guo C, Lin X, et al. Anlotinib Alone or in Combination With Temozolomide in the Treatment of Recurrent High-Grade Glioma: A Retrospective Analysis[J]. Front Pharmacol, 2021, 12: 804942. DOI: 10.3389/fphar.2021.804942
    [42]
    Lombardi G, De Salvo GL, Brandes AA, et al. Regora-fenib compared with lomustine in patients with relapsed glioblastoma (REGOMA): a multicentre, open-label, randomised, controlled, phase 2 trial[J]. Lancet Oncol, 2019, 20: 110-119. DOI: 10.1016/S1470-2045(18)30675-2
    [43]
    Lim M, Xia Y, Bettegowda C, et al. Current state of immunotherapy for glioblastoma[J]. Nat Rev Clin Oncol, 2018, 15: 422-442. DOI: 10.1038/s41571-018-0003-5
    [44]
    Fares J, Ahmed AU, Ulasov IV, et al. Neural stem cell delivery of an oncolytic adenovirus in newly diagnosed malignant glioma: a first-in-human, phase 1, dose-escalation trial[J]. Lancet Oncol, 2021, 22: 1103-1114. DOI: 10.1016/S1470-2045(21)00245-X
    [45]
    Vitanza NA, Johnson AJ, Wilson AL, et al. Locoregional infusion of HER2-specific CAR T cells in children and young adults with recurrent or refractory CNS tumors: an interim analysis[J]. Nat Med, 2021, 27: 1544-1552. DOI: 10.1038/s41591-021-01404-8
    [46]
    Gao X, Xia X, Li F, et al. Circular RNA-encoded oncogenic E-cadherin variant promotes glioblastoma tumorigeni-city through activation of EGFR-STAT3 signalling[J]. Nat Cell Biol, 2021, 23: 278-291. DOI: 10.1038/s41556-021-00639-4
    [47]
    Hasan MN, Luo L, Ding D, et al. Blocking NHE1 stimulates glioma tumor immunity by restoring OXPHOS function of myeloid cells[J]. Theranostics, 2021, 11: 1295-1309. DOI: 10.7150/thno.50150
    [48]
    Chen Q, Jin J, Huang X, et al. EMP3 mediates glioblastoma-associated macrophage infiltration to drive T cell exclusion[J]. J Exp Clin Cancer Res, 2021, 40: 160. DOI: 10.1186/s13046-021-01954-2
    [49]
    Wang QW, Sun LH, Zhang Y, et al. MET overexpression contributes to STAT4-PD-L1 signaling activation associated with tumor-associated, macrophages-mediated immunosuppression in primary glioblastomas[J]. J Immunother Cancer, 2021, 9: e002451. DOI: 10.1136/jitc-2021-002451
    [50]
    Amoozgar Z, Kloepper J, Ren J, et al. Targeting Treg cells with GITR activation alleviates resistance to immunotherapy in murine glioblastomas[J]. Nat Commun, 2021, 12: 2582. DOI: 10.1038/s41467-021-22885-8
    [51]
    Cao Y, Ding S, Zeng L, et al. Reeducating Tumor-Associated Macrophages Using CpG@Au Nanocomposites to Modulate Immunosuppressive Microenvironment for Improved Radio-Immunotherapy[J]. ACS Appl Mater Interfaces, 2021, 13: 53504-53518. DOI: 10.1021/acsami.1c07626
    [52]
    Fan Y, Cui Y, Hao W, et al. Carrier-free highly drug-loaded biomimetic nanosuspensions encapsulated by cancer cell membrane based on homology and active targeting for the treatment of glioma[J]. Bioact Mater, 2021, 6: 4402-4414. DOI: 10.1016/j.bioactmat.2021.04.027
    [53]
    Wang Y, Jiang Y, Wei D, et al. Nanoparticle-mediated convection-enhanced delivery of a DNA intercalator to gliomas circumvents temozolomide resistance[J]. Nat Biomed Eng, 2021, 5: 1048-1058. DOI: 10.1038/s41551-021-00728-7
    [54]
    Miao YB, Chen KH, Chen CT, et al. A Noninvasive Gut-to-Brain Oral Drug Delivery System for Treating Brain Tumors[J]. Adv Mater, 2021, 33: e2100701. DOI: 10.1002/adma.202100701
    [55]
    Wang J, Tang W, Yang M, et al. Inflammatory tumor microenvironment responsive neutrophil exosomes-based drug delivery system for targeted glioma therapy[J]. Biomaterials, 2021, 273: 120784. DOI: 10.1016/j.biomaterials.2021.120784
    [56]
    Zhang J, Chen C, Li A, et al. Immunostimulant hydrogel for the inhibition of malignant glioma relapse post-resection[J]. Nat Nanotechnol, 2021, 16: 538-548. DOI: 10.1038/s41565-020-00843-7
    [57]
    Niu W, Xiao Q, Wang X, et al. A Biomimetic Drug Delivery System by Integrating Grapefruit Extracellular Vesicles and Doxorubicin-Loaded Heparin-Based Nanoparticles for Glioma Therapy[J]. Nano Lett, 2021, 21: 1484-1492. DOI: 10.1021/acs.nanolett.0c04753
    [58]
    Liu Y, Wang X, Li J, et al. Sphingosine 1-Phosphate Liposomes for Targeted Nitric Oxide Delivery to Mediate Anticancer Effects against Brain Glioma Tumors[J]. Adv Mater, 2021, 33: e2101701. DOI: 10.1002/adma.202101701
  • Related Articles

    [1]WANG Pu, GAO Liming, ZHANG Wenyang, YE Ting, LI Hongyan, GUO Rui. Relationship Between Expressions of SDHx Genes and Immune Cell Infiltration in Pheochromocytoma/Paraganglioma[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-1093
    [2]LEI Zhenyun, XUE Guozhong, LIU Zhenhua, ZHANG Xinli. Research progress on action mechanism of NLRP3 inflammasome and pyroptosis in diabetic nephropathy[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0543
    [3]CHEN Wenlin, WANG Yuekun, LIU Qianshu, YE Liguo, ZHENG Zhiyao, ZHANG Xin, GONG Le, CAO Yaning, SONG Yixuan, GUO Xiaopeng, WANG Yu, MA Wenbin. Annual Research Progress of Glioma in China in 2022[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 983-990. DOI: 10.12290/xhyxzz.2023-0321
    [4]CHEN Yuqing, LI Jinming. Virological Characteristics of the Omicron Variant: Key Mutations, Pathogenicity, and Immune Escape[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 945-952. DOI: 10.12290/xhyxzz.2023-0139
    [5]ZENG Xinying, WEN Xuejun, GUO Zhide, ZHANG Xianzhong. Advances in Synergistic Antitumor Effects of Radiopharmaceuticals Combined with Immune Checkpoint Inhibitors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 680-690. DOI: 10.12290/xhyxzz.2023-0159
    [6]LIU Yuan, ZHAO Lin. Update and Interpretation of 2022 National Comprehensive Cancer Network Clinical Practice Guidelines for Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 999-1004. DOI: 10.12290/xhyxzz.2022-0271
    [7]ZHANG Shan, LIU Zhaorui, LIU Jie. Relationship Between SerpinB9 and Tumors and Research Progress of SerpinB9 in Skin Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 852-857. DOI: 10.12290/xhyxzz.2021-0805
    [9]Ming-sheng MA, Xü-de ZHANG, Min WEI, Shi-min ZHAO, Zheng-qing QIU. Efficacy of Low Dose Corticosteroid Therapy in Duchenne Muscular Dystrophy[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 384-388. DOI: 10.3969/j.issn.1674-9081.2014.04.006
    [10]Jie LIU, Yue-ping ZENG, Chun-xia HE, Qin LONG, Hong-zhong JIN, Qiu-ning SUN. Corticosteroids plus Intravenous Immunoglobulin in the Treatment of 7 Cases with Stevens-Johnson Syndrome and Toxic Epidermal Necrolysis[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(4): 381-385. DOI: 10.3969/j.issn.1674-9081.2012.04.004
  • Cited by

    Periodical cited type(11)

    1. 张志伟,王宏勤. OASL基因在低级别胶质瘤中的表达及临床意义. 中西医结合心脑血管病杂志. 2025(05): 669-677 .
    2. 李守斌,汪军,张书海,代兴亮,侯唯姝. 基于影像组学模型预测胶质母细胞瘤患者术后一年死亡风险. 临床放射学杂志. 2024(04): 523-527 .
    3. 周洲,洪文静,王睿,聂团彪,李淑姬,肖泽锋. 我国神经胶质瘤病人护理干预领域研究的可视化分析. 全科护理. 2024(12): 2208-2212 .
    4. 刘云默,潘隆盛,张宇,何鹏,冯世宇. 基于惯性聚焦微流控的循环肿瘤细胞检测技术在脑胶质瘤辅助诊断中的应用研究. 解放军医学院学报. 2024(06): 590-595+601 .
    5. 贺维,潘鹭翔,韩宇晨,邹彦琦,顾锦涛,贾博,刘骁,曹正聪,姜雨然,张阔,张旺倩,王舒宁,李萌,张英起,郝强. siRNA干扰Geminin基因对脑胶质瘤放疗敏感性的影响. 山西医科大学学报. 2023(01): 17-23 .
    6. 侯魁元,邓贺民,刘建勇,苏颖,王伟君,曲艺,王丹丹,焦乐. PDT通过氧化应激增加TMZ对胶质瘤U251细胞的抑制. 医学研究杂志. 2023(05): 148-152+171 .
    7. 周高阳,周锦鹏,李玉骞,祝刚,魏明豪. 神经胶质瘤患者circ-VCAN表达水平及其对预后的影响. 北京医学. 2023(07): 574-577+583 .
    8. 于泓,郭世文. 立体定向微创手术治疗脑胶质瘤的近期疗效观察. 青岛医药卫生. 2023(05): 370-373 .
    9. 张春丰,褚庆森,石晓梅,杨帆,李迎. 脑胶质瘤术后谵妄护理预警模型的构建与验证. 中华行为医学与脑科学杂志. 2022(11): 996-1001 .
    10. 王媛媛,邱鹏程,杜洋,郑淑娴,薛玉叶,孙光强,陆云阳,汤海峰. 重楼皂苷I对胶质瘤细胞增殖和迁移的影响. 环球中医药. 2022(11): 1804-1811 .
    11. 吴青,鲁菲菲,邓志鹏,李忻蔚,杨易倩,梅文球,胡美纯,林莉. 华蟾酥毒基对神经胶质瘤细胞增殖、迁移侵袭及凋亡的影响. 湖北科技学院学报(医学版). 2022(06): 481-485 .

    Other cited types(9)

Catalog

    Article Metrics

    Article views (4206) PDF downloads (270) Cited by(20)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close