CHEN Yuqing, LI Jinming. Virological Characteristics of the Omicron Variant: Key Mutations, Pathogenicity, and Immune Escape[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 945-952. DOI: 10.12290/xhyxzz.2023-0139
Citation: CHEN Yuqing, LI Jinming. Virological Characteristics of the Omicron Variant: Key Mutations, Pathogenicity, and Immune Escape[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 945-952. DOI: 10.12290/xhyxzz.2023-0139

Virological Characteristics of the Omicron Variant: Key Mutations, Pathogenicity, and Immune Escape

More Information
  • Corresponding author:

    LI Jinming, E-mail: jmli@nccl.org.cn

  • Received Date: March 20, 2023
  • Accepted Date: May 04, 2023
  • Available Online: May 07, 2023
  • Issue Publish Date: September 29, 2023
  • Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron variant was first detected in Botswana and subsequently led to a worldwide surge in infections. Until now, Omicron and its lineages, the most highly mutated strains among variants of concern (VOC), have contained at least 50 mutations in the entire genome. Mutations give the virus certain adaptive advantages, such as the enhanced affinity between receptor binding domain (RBD) and human angiotensin-converting enzyme 2 (ACE2) receptors leading to enhanced transmission of the virus, and the weakened ability of virus replication leading to mild symptoms in patients with COVID-19. In addition, given its high environmental stability, Omicron can partially escape the host immune response induced by vaccination or prior infection, and is highly resistant tomost therapeutic antibodies.In this paper, key mutations, virological characteristics, pathogenicity, and immune escape of the Omicron variant are summarized, in order to provide scientific reference for coping with the new situation of the pandemic, as well as improving pandemic prevention and control strategy and public health measures.
  • [1]
    World Health Organization. WHO Coronavirus (COVID-19) Dashboard With Vaccination Data[EB/OL].(2023-05-03)[2023-05-05]. https://covid19.who.int/?gclid=CjwKCAiAlNf-.
    [2]
    World Health Organization. Tracking SARS-CoV-2 variants[EB/OL].(2023-04-27)[2023-05-05]. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/.
    [3]
    Vaughan A. Omicron emerges[J]. New Sci, 2021, 252: 7.
    [4]
    Carabelli AM, Peacock TP, Thorne LG, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness[J]. Nat Rev Microbiol, 2023, 21: 162-177.
    [5]
    Hirose R, Itoh Y, Ikegaya H, et al. Differences in environmental stability among SARS-CoV-2 variants of concern: Both Omicron BA. 1 and BA. 2 have higher stability[J]. Clin Microbiol Infect, 2022, 28: 1486-1491. DOI: 10.1016/j.cmi.2022.05.020
    [6]
    Hu J, Peng P, Cao X, et al. Increased immune escape of the new SARS-CoV-2 variant of concern Omicron[J]. Cell Mol Immunol, 2022, 19: 293-295. DOI: 10.1038/s41423-021-00836-z
    [7]
    Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic[J]. Lancet, 2021, 398: 2126-2128. DOI: 10.1016/S0140-6736(21)02758-6
    [8]
    Pastorio C, Zech F, Noettger S. Determinants of spike infectivity, processing and neutralization in SARS-CoV-2 Omicron subvariants BA. 1 and BA. 2[J]. Cell Host Microbe, 2022, 30: 1255-1268. DOI: 10.1016/j.chom.2022.07.006
    [9]
    Chen J, Qiu Y, Wang R, et al. Persistent Laplacian projected Omicron BA. 4 and BA. 5 to become new dominating variants[J]. Comput Biol Med, 2022, 151: 106262. DOI: 10.1016/j.compbiomed.2022.106262
    [10]
    Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19[J]. Nat Rev Microbiol, 2021, 19: 141-154. DOI: 10.1038/s41579-020-00459-7
    [11]
    Tian D, Sun Y, Xu H, et al. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant[J]. J Med Virol, 2022, 94: 2376-2383. DOI: 10.1002/jmv.27643
    [12]
    Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B. 1.1.529 leads to widespread escape from neutralizing antibody responses[J]. Cell, 2022, 185: 467-484. e15. DOI: 10.1016/j.cell.2021.12.046
    [13]
    Chen J, Wang R, Gilby NB, et al. Omicron variant (B. 1.1.529): infectivity, vaccine breakthrough, and antibody resistance[J]. J Chem Inf Model, 2022, 62: 412-422. DOI: 10.1021/acs.jcim.1c01451
    [14]
    Chan YA, Zhan SH. The emergence of the spike furin cleavage site in SARS-CoV-2[J]. Mol Biol Evol, 2022, 39: msab327. DOI: 10.1093/molbev/msab327
    [15]
    Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B. 1.1.7 and B. 1.351 variants to neutralizing antibodies[J]. Nat Med, 2021, 27: 917-924. DOI: 10.1038/s41591-021-01318-5
    [16]
    Wang Q, Ye SB, Zhou ZJ, et al. Key mutations in the spike protein of SARS-CoV-2 affecting neutralization resistance and viral internalization[J]. J Med Virol, 2023, 95: e28407. DOI: 10.1002/jmv.28407
    [17]
    Cox MG, Peacock TP, Harvey WT, et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies[J]. Nat Rev Microbiol, 2023, 21: 112-124. DOI: 10.1038/s41579-022-00809-7
    [18]
    Li Q, Nie J, Wu J, et al. SARS-CoV-2 501Y. V2 variants lack higher infectivity but do have immune escape[J]. Cell, 2021, 184: 2362-2371. e9. DOI: 10.1016/j.cell.2021.02.042
    [19]
    Yu J, Collier AY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron BA. 1 and BA. 2 variants[J]. N Engl J Med, 2022, 386: 1579-1580. DOI: 10.1056/NEJMc2201849
    [20]
    Rodino KG, Peaper DR, Kelly BJ, et al. Partial ORF1ab gene target failure with Omicron BA. 2.12.1[J]. J Clin Microbiol, 2022, 60: e00600-22.
    [21]
    Cao Y, Yisimayi A, Jian F, et al. BA. 2.12.1, BA. 4 and BA. 5 escape antibodies elicited by Omicron infection[J]. Nature, 2022, 608: 593-602. DOI: 10.1038/s41586-022-04980-y
    [22]
    Liu C, Lu J, Li P, et al. A Comparative study on epidemiological characteristics, transmissibility, and pathogenicity of three COVID-19 outbreaks caused by different variants[J]. Int J Infect Dis, 2023. doi: 10.1016/j.ijid.2023.01.039.
    [23]
    Kumar S, Karuppanan K, Subramaniam G. Omicron (BA. 1) and sub-variants (BA. 1.1, BA. 2, and BA. 3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based computational assess-ment[J]. J Med Virol, 2022, 94: 4780-4791. DOI: 10.1002/jmv.27927
    [24]
    Fantini J, Yahi N, Colson P, et al. The puzzling mutational landscape of the SARS-CoV-2-variant Omicron[J]. J Med Virol, 2022, 94: 2019-2025. DOI: 10.1002/jmv.27577
    [25]
    Fantini J, Yahi N, Azzaz F, et al. Structural dynamics of SARS-CoV-2 variants: A health monitoring strategy for anticipating COVID-19 outbreaks[J]. J Infect, 2021, 83: 197-206. DOI: 10.1016/j.jinf.2021.06.001
    [26]
    Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA. 2.12.1, BA. 4 and BA. 5[J]. Nature, 2022, 608: 603-608. DOI: 10.1038/s41586-022-05053-w
    [27]
    Benvenuto D, Angeletti S, Giovanetti M, et al. Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy[J]. J Infect, 2020, 81: e24-e27.
    [28]
    Goldswain H, Dong X, Penrice-Randal R, et al. The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection[J]. Genome Biol, 2023, 24: 47. DOI: 10.1186/s13059-023-02881-5
    [29]
    Wu H, Xing N, Meng K, et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2[J]. Cell Host Microbe, 2021, 29: 1788-1801. e6. DOI: 10.1016/j.chom.2021.11.005
    [30]
    Garcia-Beltran WF, Denis KJS, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant[J]. Cell, 2022, 185: 457-466. e4. DOI: 10.1016/j.cell.2021.12.033
    [31]
    Zhao H, Lu L, Peng Z, et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells[J]. Emerg Microbes Infect, 2022, 11: 277-283. DOI: 10.1080/22221751.2021.2023329
    [32]
    Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181: 271-280. e8. DOI: 10.1016/j.cell.2020.02.052
    [33]
    Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant[J]. Nature, 2022, 603: 700-705. DOI: 10.1038/s41586-022-04462-1
    [34]
    Shuai H, Chan JFW, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B. 1.1.529 Omicron[J]. Nature, 2022, 603: 693-699. DOI: 10.1038/s41586-022-04442-5
    [35]
    Yamasoba D, Kimura I, Nasser H, et al. Virological characteristics of the SARS-CoV-2 Omicron BA. 2 spike[J]. Cell, 2022, 185: 2103-2115. e19. DOI: 10.1016/j.cell.2022.04.035
    [36]
    Ito K, Piantham C, Nishiura H. Estimating relative generation times and relative reproduction numbers of Omicron BA. 1 and BA. 2 with respect to Delta in Denmark[J]. Math Biosci Eng, 2022, 19: 9005-9017. DOI: 10.3934/mbe.2022418
    [37]
    Qassim SH, Chemaitelly H, Ayoub HH, et al. Effects of BA. 1/BA. 2 subvariant, vaccination and prior infection on infectiousness of SARS-CoV-2 omicron infections[J]. J Travel Med, 2022, 29: taac068. DOI: 10.1093/jtm/taac068
    [38]
    Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the SARS-CoV-2 Omicron BA. 2 subvariants, including BA. 4 and BA. 5[J]. Cell, 2022, 185: 3992-4007. e16. DOI: 10.1016/j.cell.2022.09.018
    [39]
    Tegally H, Moir M, Everatt J, et al. Emergence of SARS-CoV-2 omicron lineages BA. 4 and BA. 5 in South Africa[J]. Nat Med, 2022, 28: 1785-1790. DOI: 10.1038/s41591-022-01911-2
    [40]
    Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron(B. 1.1.529) and delta (B. 1.617.2) variants in England: a cohort study[J]. Lancet, 2022, 399: 1303-1312. DOI: 10.1016/S0140-6736(22)00462-7
    [41]
    Bager P, Wohlfahrt J, Bhatt S, et al. Risk of hospitalisation associated with infection with SARS-CoV-2 omicron variant versus delta variant in Denmark: an observational cohort study[J]. Lancet Infect Dis, 2022, 22: 967-976. DOI: 10.1016/S1473-3099(22)00154-2
    [42]
    Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study[J]. Lancet, 2022, 399: 437-446. DOI: 10.1016/S0140-6736(22)00017-4
    [43]
    Wang L, Berger NA, Kaelber DC, et al. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron[J]. medRxiv[Preprint]. 2022. doi: 10.1101/2021.12.30.21268495.
    [44]
    Espenhain L, Funk T, Overvad M, et al. Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, December 2021[J]. Euro Surveill, 2021, 26: 2101146.
    [45]
    Goga A, Bekker LG, Garrett N, et al. Breakthrough SARS-CoV-2 infections during periods of delta and omicron predominance, South Africa[J]. Lancet, 2022, 400: 269-271. DOI: 10.1016/S0140-6736(22)01190-4
    [46]
    Lewnard JA, Hong VX, Patel MM, et al. Clinical outcomes associated with SARS-CoV-2 Omicron (B. 1.1.529) variant and BA. 1/BA. 1.1 or BA. 2 subvariant infection in Southern California[J]. Nat Med, 2022, 28: 1933-1943. DOI: 10.1038/s41591-022-01887-z
    [47]
    Davies MA, Morden E, Rosseau P, et al. Outcomes of laboratory-confirmed SARS-CoV-2 infection during resurgence driven by Omicron lineages BA. 4 and BA. 5 compared with previous waves in the Western Cape Province, South Africa[J]. Int J Infect Dis, 2022, 127: 63-68.
    [48]
    Hui KPY, Ho JCW, Cheung M, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo[J]. Nature, 2022, 603: 715-720. DOI: 10.1038/s41586-022-04479-6
    [49]
    Halfmann PJ, Iida S, Iwatsuki-Horimoto K, et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters[J]. Nature, 2022, 603: 687-692. DOI: 10.1038/s41586-022-04441-6
    [50]
    Christie B. COVID-19: Early studies give hope omicron is milder than other variants[J]. BMJ, 2021, 375: n3144.
    [51]
    Zhou H, Tada T, Dcosta BM, et al. Neutralization of SARS-CoV-2 Omicron BA. 2 by Therapeutic Monoclonal Antibodies[J]. bioRxiv[Preprint], 2022 Feb 24: 2022.02.15.480166.
    [52]
    Nutalai R, Zhou D, Tuekprakhon A, et al. Potent cross-reactive antibodies following Omicron breakthrough in vaccinees[J]. Cell, 2022, 185: 2116-2131. e18. DOI: 10.1016/j.cell.2022.05.014
    [53]
    Kurhade C, Zou J, Xia H, et al. Neutralization of Omicron BA. 1, BA. 2, and BA. 3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine[J]. Nat Commun, 2022, 13: 3602. DOI: 10.1038/s41467-022-30681-1
    [54]
    Ai J, Zhang H, Zhang Y, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost[J]. Emerg Microbes Infect, 2022, 11: 337-343. DOI: 10.1080/22221751.2021.2022440
    [55]
    Dupont L, Snell LB, Graham C, et al. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern[J]. Nat Microbiol, 2021, 6: 1433-1442. DOI: 10.1038/s41564-021-00974-0
    [56]
    Zou J, Kurhade C, Xia H, et al. Cross-neutralization of Omicron BA. 1 against BA. 2 and BA. 3 SARS-CoV-2[J]. Nat Commun, 2022, 13: 2956. DOI: 10.1038/s41467-022-30580-5
    [57]
    Hachmann NP, Miller J, Collier AY, et al. Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA. 2.12.1, BA. 4, and BA. 5[J]. N Engl J Med, 2022, 387: 86-88. DOI: 10.1056/NEJMc2206576
    [58]
    Taylor PC, Adams AC, Hufford MM, et al. Neutralizing monoclonal antibodies for treatment of COVID-19[J]. Nat Rev Immunol, 2021, 21: 382-393. DOI: 10.1038/s41577-021-00542-x
    [59]
    Ohashi H, Hishiki T, Akazawa D, et al. Different efficacies of neutralizing antibodies and antiviral drugs on SARS-CoV-2 Omicron subvariants, BA. 1 and BA. 2[J]. Antiviral Res, 2022, 205: 105372. DOI: 10.1016/j.antiviral.2022.105372
    [60]
    Imai M, Ito M, Kiso M, et al. Efficacy of Antiviral Agents against Omicron Subvariants BQ. 1.1 and XBB[J]. N Engl J Med, 2023, 388: 89-91.
    [61]
    Davis-Gardner ME, Lai L, Wali B, et al. Neutralization against BA. 2.75.2, BQ. 1.1, and XBB from mRNA Bivalent Booster[J]. N Engl J Med, 2023, 388: 183-185. DOI: 10.1056/NEJMc2214293
  • Cited by

    Periodical cited type(7)

    1. 李瑞蓉,廖康,余学高,郭鹏豪,刘梦娜,邓间开. 2型糖尿病酮症酸中毒合并侵袭性肺少根根霉感染1例报道. 检验医学. 2025(02): 201-204 .
    2. 向国华,李占结. 某三甲医院2013-2023年真菌检出与感染的流行病学变化趋势. 中华医院感染学杂志. 2025(03): 446-450 .
    3. 梁乔芳,廖小林,苏桂玉,吴洪文. 毛霉病抗感染治疗药物的现状与未来展望. 今日药学. 2024(01): 6-12 .
    4. 沈洁,祁继金. COVID-19后血液病患者呼吸道感染菌种分布及耐药性分析. 中国医药指南. 2024(08): 15-18 .
    5. 惠迪,张丽华,任语谦,朱淑华,刘芳,汪卿,陈樱花,谢红浪. 狼疮性肾炎继发侵袭性肺曲霉病的临床特征及预后. 肾脏病与透析肾移植杂志. 2024(01): 16-21 .
    6. 中国初级卫生保健基金会检验医学研究与转化专业委员会,中国医院协会临床微生物实验室专业委员会,全国真菌病监测网侵袭性霉菌感染监测项目组. 侵袭性霉菌感染实验室诊断临床应用专家共识. 中华检验医学杂志. 2024(06): 597-609 .
    7. 班立芳,楚亚菲,陈仁德,陈向阳,郭长城,韩云港,荆楠,李姝,马冰,马琼,孟高攀,阙蔚鹏,秦辉,孙英,宋俐君,泰淑红,王山梅,王健,许俊红,张江峰. 侵袭性真菌感染快速检测河南专家共识. 河南医学研究. 2024(16): 2881-2887 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1399) PDF downloads (97) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close