[1]
|
World Health Organization. WHO Coronavirus (COVID-19) Dashboard With Vaccination Data[EB/OL].(2023-05-03)[2023-05-05]. https://covid19.who.int/?gclid=CjwKCAiAlNf-. |
[2]
|
World Health Organization. Tracking SARS-CoV-2 variants[EB/OL].(2023-04-27)[2023-05-05]. https://www.who.int/en/activities/tracking-SARS-CoV-2-variants/. |
[3]
|
Vaughan A. Omicron emerges[J]. New Sci, 2021, 252: 7. |
[4]
|
Carabelli AM, Peacock TP, Thorne LG, et al. SARS-CoV-2 variant biology: immune escape, transmission and fitness[J]. Nat Rev Microbiol, 2023, 21: 162-177. |
[5]
|
Hirose R, Itoh Y, Ikegaya H, et al. Differences in environmental stability among SARS-CoV-2 variants of concern: Both Omicron BA. 1 and BA. 2 have higher stability[J]. Clin Microbiol Infect, 2022, 28: 1486-1491. doi: 10.1016/j.cmi.2022.05.020 |
[6]
|
Hu J, Peng P, Cao X, et al. Increased immune escape of the new SARS-CoV-2 variant of concern Omicron[J]. Cell Mol Immunol, 2022, 19: 293-295. doi: 10.1038/s41423-021-00836-z |
[7]
|
Karim SSA, Karim QA. Omicron SARS-CoV-2 variant: a new chapter in the COVID-19 pandemic[J]. Lancet, 2021, 398: 2126-2128. doi: 10.1016/S0140-6736(21)02758-6 |
[8]
|
Pastorio C, Zech F, Noettger S. Determinants of spike infectivity, processing and neutralization in SARS-CoV-2 Omicron subvariants BA. 1 and BA. 2[J]. Cell Host Microbe, 2022, 30: 1255-1268. doi: 10.1016/j.chom.2022.07.006 |
[9]
|
Chen J, Qiu Y, Wang R, et al. Persistent Laplacian projected Omicron BA. 4 and BA. 5 to become new dominating variants[J]. Comput Biol Med, 2022, 151: 106262. doi: 10.1016/j.compbiomed.2022.106262 |
[10]
|
Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19[J]. Nat Rev Microbiol, 2021, 19: 141-154. doi: 10.1038/s41579-020-00459-7 |
[11]
|
Tian D, Sun Y, Xu H, et al. The emergence and epidemic characteristics of the highly mutated SARS-CoV-2 Omicron variant[J]. J Med Virol, 2022, 94: 2376-2383. doi: 10.1002/jmv.27643 |
[12]
|
Dejnirattisai W, Huo J, Zhou D, et al. SARS-CoV-2 Omicron-B. 1.1.529 leads to widespread escape from neutralizing antibody responses[J]. Cell, 2022, 185: 467-484. e15. doi: 10.1016/j.cell.2021.12.046 |
[13]
|
Chen J, Wang R, Gilby NB, et al. Omicron variant (B. 1.1.529): infectivity, vaccine breakthrough, and antibody resistance[J]. J Chem Inf Model, 2022, 62: 412-422. doi: 10.1021/acs.jcim.1c01451 |
[14]
|
Chan YA, Zhan SH. The emergence of the spike furin cleavage site in SARS-CoV-2[J]. Mol Biol Evol, 2022, 39: msab327. doi: 10.1093/molbev/msab327 |
[15]
|
Planas D, Bruel T, Grzelak L, et al. Sensitivity of infectious SARS-CoV-2 B. 1.1.7 and B. 1.351 variants to neutralizing antibodies[J]. Nat Med, 2021, 27: 917-924. doi: 10.1038/s41591-021-01318-5 |
[16]
|
Wang Q, Ye SB, Zhou ZJ, et al. Key mutations in the spike protein of SARS-CoV-2 affecting neutralization resistance and viral internalization[J]. J Med Virol, 2023, 95: e28407. doi: 10.1002/jmv.28407 |
[17]
|
Cox MG, Peacock TP, Harvey WT, et al. SARS-CoV-2 variant evasion of monoclonal antibodies based on in vitro studies[J]. Nat Rev Microbiol, 2023, 21: 112-124. doi: 10.1038/s41579-022-00809-7 |
[18]
|
Li Q, Nie J, Wu J, et al. SARS-CoV-2 501Y. V2 variants lack higher infectivity but do have immune escape[J]. Cell, 2021, 184: 2362-2371. e9. doi: 10.1016/j.cell.2021.02.042 |
[19]
|
Yu J, Collier AY, Rowe M, et al. Neutralization of the SARS-CoV-2 Omicron BA. 1 and BA. 2 variants[J]. N Engl J Med, 2022, 386: 1579-1580. doi: 10.1056/NEJMc2201849 |
[20]
|
Rodino KG, Peaper DR, Kelly BJ, et al. Partial ORF1ab gene target failure with Omicron BA. 2.12.1[J]. J Clin Microbiol, 2022, 60: e00600-22. |
[21]
|
Cao Y, Yisimayi A, Jian F, et al. BA. 2.12.1, BA. 4 and BA. 5 escape antibodies elicited by Omicron infection[J]. Nature, 2022, 608: 593-602. doi: 10.1038/s41586-022-04980-y |
[22]
|
Liu C, Lu J, Li P, et al. A Comparative study on epidemiological characteristics, transmissibility, and pathogenicity of three COVID-19 outbreaks caused by different variants[J]. Int J Infect Dis, 2023. doi: 10.1016/j.ijid.2023.01.039. |
[23]
|
Kumar S, Karuppanan K, Subramaniam G. Omicron (BA. 1) and sub-variants (BA. 1.1, BA. 2, and BA. 3) of SARS-CoV-2 spike infectivity and pathogenicity: A comparative sequence and structural-based computational assess-ment[J]. J Med Virol, 2022, 94: 4780-4791. doi: 10.1002/jmv.27927 |
[24]
|
Fantini J, Yahi N, Colson P, et al. The puzzling mutational landscape of the SARS-CoV-2-variant Omicron[J]. J Med Virol, 2022, 94: 2019-2025. doi: 10.1002/jmv.27577 |
[25]
|
Fantini J, Yahi N, Azzaz F, et al. Structural dynamics of SARS-CoV-2 variants: A health monitoring strategy for anticipating COVID-19 outbreaks[J]. J Infect, 2021, 83: 197-206. doi: 10.1016/j.jinf.2021.06.001 |
[26]
|
Wang Q, Guo Y, Iketani S, et al. Antibody evasion by SARS-CoV-2 Omicron subvariants BA. 2.12.1, BA. 4 and BA. 5[J]. Nature, 2022, 608: 603-608. doi: 10.1038/s41586-022-05053-w |
[27]
|
Benvenuto D, Angeletti S, Giovanetti M, et al. Evolutionary analysis of SARS-CoV-2: how mutation of Non-Structural Protein 6 (NSP6) could affect viral autophagy[J]. J Infect, 2020, 81: e24-e27. |
[28]
|
Goldswain H, Dong X, Penrice-Randal R, et al. The P323L substitution in the SARS-CoV-2 polymerase (NSP12) confers a selective advantage during infection[J]. Genome Biol, 2023, 24: 47. doi: 10.1186/s13059-023-02881-5 |
[29]
|
Wu H, Xing N, Meng K, et al. Nucleocapsid mutations R203K/G204R increase the infectivity, fitness, and virulence of SARS-CoV-2[J]. Cell Host Microbe, 2021, 29: 1788-1801. e6. doi: 10.1016/j.chom.2021.11.005 |
[30]
|
Garcia-Beltran WF, Denis KJS, Hoelzemer A, et al. mRNA-based COVID-19 vaccine boosters induce neutralizing immunity against SARS-CoV-2 Omicron variant[J]. Cell, 2022, 185: 457-466. e4. doi: 10.1016/j.cell.2021.12.033 |
[31]
|
Zhao H, Lu L, Peng Z, et al. SARS-CoV-2 Omicron variant shows less efficient replication and fusion activity when compared with Delta variant in TMPRSS2-expressed cells[J]. Emerg Microbes Infect, 2022, 11: 277-283. doi: 10.1080/22221751.2021.2023329 |
[32]
|
Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor[J]. Cell, 2020, 181: 271-280. e8. doi: 10.1016/j.cell.2020.02.052 |
[33]
|
Suzuki R, Yamasoba D, Kimura I, et al. Attenuated fusogenicity and pathogenicity of SARS-CoV-2 Omicron variant[J]. Nature, 2022, 603: 700-705. doi: 10.1038/s41586-022-04462-1 |
[34]
|
Shuai H, Chan JFW, Hu B, et al. Attenuated replication and pathogenicity of SARS-CoV-2 B. 1.1.529 Omicron[J]. Nature, 2022, 603: 693-699. doi: 10.1038/s41586-022-04442-5 |
[35]
|
Yamasoba D, Kimura I, Nasser H, et al. Virological characteristics of the SARS-CoV-2 Omicron BA. 2 spike[J]. Cell, 2022, 185: 2103-2115. e19. doi: 10.1016/j.cell.2022.04.035 |
[36]
|
Ito K, Piantham C, Nishiura H. Estimating relative generation times and relative reproduction numbers of Omicron BA. 1 and BA. 2 with respect to Delta in Denmark[J]. Math Biosci Eng, 2022, 19: 9005-9017. doi: 10.3934/mbe.2022418 |
[37]
|
Qassim SH, Chemaitelly H, Ayoub HH, et al. Effects of BA. 1/BA. 2 subvariant, vaccination and prior infection on infectiousness of SARS-CoV-2 omicron infections[J]. J Travel Med, 2022, 29: taac068. doi: 10.1093/jtm/taac068 |
[38]
|
Kimura I, Yamasoba D, Tamura T, et al. Virological characteristics of the SARS-CoV-2 Omicron BA. 2 subvariants, including BA. 4 and BA. 5[J]. Cell, 2022, 185: 3992-4007. e16. doi: 10.1016/j.cell.2022.09.018 |
[39]
|
Tegally H, Moir M, Everatt J, et al. Emergence of SARS-CoV-2 omicron lineages BA. 4 and BA. 5 in South Africa[J]. Nat Med, 2022, 28: 1785-1790. doi: 10.1038/s41591-022-01911-2 |
[40]
|
Nyberg T, Ferguson NM, Nash SG, et al. Comparative analysis of the risks of hospitalisation and death associated with SARS-CoV-2 omicron(B. 1.1.529) and delta (B. 1.617.2) variants in England: a cohort study[J]. Lancet, 2022, 399: 1303-1312. doi: 10.1016/S0140-6736(22)00462-7 |
[41]
|
Bager P, Wohlfahrt J, Bhatt S, et al. Risk of hospitalisation associated with infection with SARS-CoV-2 omicron variant versus delta variant in Denmark: an observational cohort study[J]. Lancet Infect Dis, 2022, 22: 967-976. doi: 10.1016/S1473-3099(22)00154-2 |
[42]
|
Wolter N, Jassat W, Walaza S, et al. Early assessment of the clinical severity of the SARS-CoV-2 omicron variant in South Africa: a data linkage study[J]. Lancet, 2022, 399: 437-446. doi: 10.1016/S0140-6736(22)00017-4 |
[43]
|
Wang L, Berger NA, Kaelber DC, et al. Comparison of outcomes from COVID infection in pediatric and adult patients before and after the emergence of Omicron[J]. medRxiv[Preprint]. 2022. doi: 10.1101/2021.12.30.21268495. |
[44]
|
Espenhain L, Funk T, Overvad M, et al. Epidemiological characterisation of the first 785 SARS-CoV-2 Omicron variant cases in Denmark, December 2021[J]. Euro Surveill, 2021, 26: 2101146. |
[45]
|
Goga A, Bekker LG, Garrett N, et al. Breakthrough SARS-CoV-2 infections during periods of delta and omicron predominance, South Africa[J]. Lancet, 2022, 400: 269-271. doi: 10.1016/S0140-6736(22)01190-4 |
[46]
|
Lewnard JA, Hong VX, Patel MM, et al. Clinical outcomes associated with SARS-CoV-2 Omicron (B. 1.1.529) variant and BA. 1/BA. 1.1 or BA. 2 subvariant infection in Southern California[J]. Nat Med, 2022, 28: 1933-1943. doi: 10.1038/s41591-022-01887-z |
[47]
|
Davies MA, Morden E, Rosseau P, et al. Outcomes of laboratory-confirmed SARS-CoV-2 infection during resurgence driven by Omicron lineages BA. 4 and BA. 5 compared with previous waves in the Western Cape Province, South Africa[J]. Int J Infect Dis, 2022, 127: 63-68. |
[48]
|
Hui KPY, Ho JCW, Cheung M, et al. SARS-CoV-2 Omicron variant replication in human bronchus and lung ex vivo[J]. Nature, 2022, 603: 715-720. doi: 10.1038/s41586-022-04479-6 |
[49]
|
Halfmann PJ, Iida S, Iwatsuki-Horimoto K, et al. SARS-CoV-2 Omicron virus causes attenuated disease in mice and hamsters[J]. Nature, 2022, 603: 687-692. doi: 10.1038/s41586-022-04441-6 |
[50]
|
Christie B. COVID-19: Early studies give hope omicron is milder than other variants[J]. BMJ, 2021, 375: n3144. |
[51]
|
Zhou H, Tada T, Dcosta BM, et al. Neutralization of SARS-CoV-2 Omicron BA. 2 by Therapeutic Monoclonal Antibodies[J]. bioRxiv[Preprint], 2022 Feb 24: 2022.02.15.480166. |
[52]
|
Nutalai R, Zhou D, Tuekprakhon A, et al. Potent cross-reactive antibodies following Omicron breakthrough in vaccinees[J]. Cell, 2022, 185: 2116-2131. e18. doi: 10.1016/j.cell.2022.05.014 |
[53]
|
Kurhade C, Zou J, Xia H, et al. Neutralization of Omicron BA. 1, BA. 2, and BA. 3 SARS-CoV-2 by 3 doses of BNT162b2 vaccine[J]. Nat Commun, 2022, 13: 3602. doi: 10.1038/s41467-022-30681-1 |
[54]
|
Ai J, Zhang H, Zhang Y, et al. Omicron variant showed lower neutralizing sensitivity than other SARS-CoV-2 variants to immune sera elicited by vaccines after boost[J]. Emerg Microbes Infect, 2022, 11: 337-343. doi: 10.1080/22221751.2021.2022440 |
[55]
|
Dupont L, Snell LB, Graham C, et al. Neutralizing antibody activity in convalescent sera from infection in humans with SARS-CoV-2 and variants of concern[J]. Nat Microbiol, 2021, 6: 1433-1442. doi: 10.1038/s41564-021-00974-0 |
[56]
|
Zou J, Kurhade C, Xia H, et al. Cross-neutralization of Omicron BA. 1 against BA. 2 and BA. 3 SARS-CoV-2[J]. Nat Commun, 2022, 13: 2956. doi: 10.1038/s41467-022-30580-5 |
[57]
|
Hachmann NP, Miller J, Collier AY, et al. Neutralization Escape by SARS-CoV-2 Omicron Subvariants BA. 2.12.1, BA. 4, and BA. 5[J]. N Engl J Med, 2022, 387: 86-88. doi: 10.1056/NEJMc2206576 |
[58]
|
Taylor PC, Adams AC, Hufford MM, et al. Neutralizing monoclonal antibodies for treatment of COVID-19[J]. Nat Rev Immunol, 2021, 21: 382-393. doi: 10.1038/s41577-021-00542-x |
[59]
|
Ohashi H, Hishiki T, Akazawa D, et al. Different efficacies of neutralizing antibodies and antiviral drugs on SARS-CoV-2 Omicron subvariants, BA. 1 and BA. 2[J]. Antiviral Res, 2022, 205: 105372. doi: 10.1016/j.antiviral.2022.105372 |
[60]
|
Imai M, Ito M, Kiso M, et al. Efficacy of Antiviral Agents against Omicron Subvariants BQ. 1.1 and XBB[J]. N Engl J Med, 2023, 388: 89-91. |
[61]
|
Davis-Gardner ME, Lai L, Wali B, et al. Neutralization against BA. 2.75.2, BQ. 1.1, and XBB from mRNA Bivalent Booster[J]. N Engl J Med, 2023, 388: 183-185. doi: 10.1056/NEJMc2214293 |