Volume 14 Issue 5
Sep.  2023
Turn off MathJax
Article Contents
ZHANG Kezhen, JIN Li. Research Progress of the Impact of SARS-CoV-2 on Fertility[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 953-958. doi: 10.12290/xhyxzz.2023-0289
Citation: ZHANG Kezhen, JIN Li. Research Progress of the Impact of SARS-CoV-2 on Fertility[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 953-958. doi: 10.12290/xhyxzz.2023-0289

Research Progress of the Impact of SARS-CoV-2 on Fertility

doi: 10.12290/xhyxzz.2023-0289
More Information
  • Corresponding author: JIN Li, E-mail: jinlipumch@hotmail.com
  • Received Date: 2023-06-12
  • Accepted Date: 2023-07-24
  • Publish Date: 2023-09-30
  • The COVID-19 pandemic caused by SARS-CoV-2 has brought great challenges to all countries. SARS-CoV-2 infection can bring damage to multiple organs of the human body. The impact of SARS-CoV-2 on fertility has become a focus of interest. This article reviews the mechanism of SARS-CoV-2 attacking the human body, and its impact on fertility, pregnancy and assisted reproductive technique, with the hope of providing reference for clinicians.
  • loading
  • [1] WHO. COVID-19 Weekly Epidemiological Update[Z]. 2021.
    [2] Ashour HM, Elkhatib WF, Rahman MM, et al. Insights into the Recent 2019 Novel Coronavirus (SARS-CoV-2) in Light of Past Human Coronavirus Outbreaks[J]. Pathogens, 2020, 9: 186. doi:  10.3390/pathogens9030186
    [3] Jackson CB, Farzan M, Chen B, et al. Mechanisms of SARS-CoV-2 entry into cells[J]. Nat Rev Mol Cell Biol, 2022, 23: 3-20.
    [4] Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 Cell Entry Depends on ACE2 and TMPRSS2 and Is Blocked by a Clinically Proven Protease Inhibitor[J]. Cell, 2020, 181: 271-280. e278. doi:  10.1016/j.cell.2020.02.052
    [5] Qi J, Zhou Y, Hua J, et al. The scRNA-seq Expression Profiling of the Receptor ACE2 and the Cellular Protease TMPRSS2 Reveals Human Organs Susceptible to SARS-CoV-2 Infection[J]. Int J Environ Res Public Health, 2021, 18: 284. doi:  10.3390/ijerph18010284
    [6] Jin JM, Bai P, He W, et al. Gender Differences in Patients With COVID-19: Focus on Severity and Mortality[J]. Front Public Health, 2020, 8: 152. doi:  10.3389/fpubh.2020.00152
    [7] Fricke-Galindo I, Falfán-Valencia R. Genetics Insight for COVID-19 Susceptibility and Severity: A Review[J]. Front Immunol, 2021, 12: 622176. doi:  10.3389/fimmu.2021.622176
    [8] Mukherjee S, Pahan K. Is COVID-19 Gender-sensitive?[J]. J Neuroimmune Pharmacol, 2021, 16: 38-47. doi:  10.1007/s11481-020-09974-z
    [9] Kresch E, Achua J, Saltzman R, et al. COVID-19 Endothelial Dysfunction Can Cause Erectile Dysfunction: Histopathological, Immunohistochemical, and Ultrastructural Study of the Human Penis[J]. World J Mens Health, 2021, 39: 466-469. doi:  10.5534/wjmh.210055
    [10] Song H, Seddighzadeh B, Cooperberg MR, et al. Expression of ACE2, the SARS-CoV-2 Receptor, and TMPRSS2 in Prostate Epithelial Cells[J]. Eur Urol, 2020, 78: 296-298. doi:  10.1016/j.eururo.2020.04.065
    [11] Wang Z, Xu X. scRNA-seq Profiling of Human Testes Reveals the Presence of the ACE2 Receptor, A Target for SARS-CoV-2 Infection in Spermatogonia, Leydig and Sertoli Cells[J]. Cells, 2020, 9: 920. doi:  10.3390/cells9040920
    [12] Borges E, Setti AS, Iaconelli A, et al. Current status of the COVID-19 and male reproduction: A review of the literature[J]. Andrology, 2021, 9: 1066-1075. doi:  10.1111/andr.13037
    [13] Stanley KE, Thomas E, Leaver M, et al. Coronavirus disease-19 and fertility: viral host entry protein expression in male and female reproductive tissues[J]. Fertil Steril, 2020, 114: 33-43. doi:  10.1016/j.fertnstert.2020.05.001
    [14] Flaifel A, Guzzetta M, Occidental M, et al. Testicular Changes Associated With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2)[J]. Arch Pathol Lab Med, 2021, 145: 8-9. doi:  10.5858/arpa.2020-0487-LE
    [15] Patel DP, Punjani N, Guo J, et al. The impact of SARS-CoV-2 and COVID-19 on male reproduction and men's health[J]. Fertil Steril, 2021, 115: 813-823. doi:  10.1016/j.fertnstert.2020.12.033
    [16] Fraietta R, de Carvalho RC, Camillo J, et al. SARS-CoV-2 is not found in human semen during mild COVID-19 acute stage[J]. Andrologia, 2022, 54: e14286.
    [17] Donders GGG, Bosmans E, Reumers J, et al. Sperm quality and absence of SARS-CoV-2 RNA in semen after COVID-19 infection: a prospective, observational study and validation of the SpermCOVID test[J]. Fertil Steril, 2022, 117: 287-296. doi:  10.1016/j.fertnstert.2021.10.022
    [18] Saylam B, Uguz M, Yarpuzlu M, et al. The presence of SARS-CoV-2 virus in semen samples of patients with COVID-19 pneumonia[J]. Andrologia, 2021, 53: e14145.
    [19] Corona G, Vena W, Pizzocaro A, et al. Andrological effects of SARS-CoV-2 infection: a systematic review and meta-analysis[J]. J Endocrinol Invest, 2022, 45: 2207-2219. doi:  10.1007/s40618-022-01801-x
    [20] Holtmann N, Edimiris P, Andree M, et al. Assessment of SARS-CoV-2 in human semen-a cohort study[J]. Fertil Steril, 2020, 114: 233-238. doi:  10.1016/j.fertnstert.2020.05.028
    [21] Guo L, Zhao S, Li W, et al. Absence of SARS-CoV-2 in semen of a COVID-19 patient cohort[J]. Andrology, 2021, 9: 42-47. doi:  10.1111/andr.12848
    [22] Goad J, Rudolph J, Rajkovic A. Female reproductive tract has low concentration of SARS-CoV2 receptors[J]. PLoS One, 2020, 15: e0243959. doi:  10.1371/journal.pone.0243959
    [23] Wu M, Ma L, Xue L, et al. Co-expression of the SARS-CoV-2 entry molecules ACE2 and TMPRSS2 in human ovaries: Identification of cell types and trends with age[J]. Genomics, 2021, 113: 3449-3460. doi:  10.1016/j.ygeno.2021.08.012
    [24] Barragan M, Guillén JJ, Martin-Palomino N, et al. Undetectable viral RNA in oocytes from SARS-CoV-2 positive women[J]. Hum Reprod, 2021, 36: 390-394. doi:  10.1093/humrep/deaa284
    [25] Henarejos-Castillo I, Sebastian-Leon P, Devesa-Peiro A, et al. SARS-CoV-2 infection risk assessment in the endometrium: viral infection-related gene expression across the menstrual cycle[J]. Fertil Steril, 2020, 114: 223-232. doi:  10.1016/j.fertnstert.2020.06.026
    [26] Boudry L, Essahib W, Mateizel I, et al. Undetectable viral RNA in follicular fluid, cumulus cells, and endometrial tissue samples in SARS-CoV-2-positive women[J]. Fertil Steril, 2022, 117: 771-780. doi:  10.1016/j.fertnstert.2021.12.032
    [27] Khan SM, Shilen A, Heslin KM, et al. SARS-CoV-2 infection and subsequent changes in the menstrual cycle among participants in the Arizona CoVHORT study[J]. Am J Obstet Gynecol, 2022, 226: 270-273. doi:  10.1016/j.ajog.2021.09.016
    [28] Li K, Chen G, Hou H, et al. Analysis of sex hormones and menstruation in COVID-19 women of child-bearing age[J]. Reprod Biomed Online, 2021, 42: 260-267. doi:  10.1016/j.rbmo.2020.09.020
    [29] Demir O, Sal H, Comba C. Triangle of COVID, anxiety and menstrual cycle[J]. J Obstet Gynaecol, 2021, 41: 1257-1261. doi:  10.1080/01443615.2021.1907562
    [30] Puca E, Puca E. Premature Ovarian Failure Related to SARS-CoV-2 Infection[J]. J Med Cases, 2022, 13: 155-158. doi:  10.14740/jmc3791
    [31] Wilkins J, Al-Inizi S. Premature ovarian insufficiency secondary to COVID-19 infection: An original case report[J]. Int J Gynaecol Obstet, 2021, 154: 179-180. doi:  10.1002/ijgo.13719
    [32] World Health Organization. Report of the WHO-China Joint Mission on Coronavirus Disease 2019 (COVID-19)[EB/OL]. (2020-02-28)[2023-06-12]. https://reliefweb.int/report/china/report-who-china-joint-mission-coronavirus-disease-2019-covid-19.
    [33] Cheng B, Jiang T, Zhang L, et al. Clinical Characteristics of Pregnant Women With Coronavirus Disease 2019 in Wuhan, China[J]. Open Forum Infect Dis, 2020, 7: ofaa294. doi:  10.1093/ofid/ofaa294
    [34] Wei L, Gao X, Chen S, et al. Clinical Characteristics and Outcomes of Childbearing-Age Women With COVID-19 in Wuhan: Retrospective, Single-Center Study[J]. J Med Internet Res, 2020, 22: e19642. doi:  10.2196/19642
    [35] Zambrano LD, Ellington S, Strid P, et al. Update: Characteristics of Symptomatic Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status-United States, January 22-October 3, 2020[J]. MMWR Morb Mortal Wkly Rep, 2020, 69: 1641-1647. doi:  10.15585/mmwr.mm6944e3
    [36] Delahoy MJ, Whitaker M, O'Halloran A, et al. Characteristics and Maternal and Birth Outcomes of Hospitalized Pregnant Women with Laboratory-Confirmed COVID-19-COVID-NET, 13 States, March 1-August 22, 2020[J]. MMWR Morb Mortal Wkly Rep, 2020, 69: 1347-1354. doi:  10.15585/mmwr.mm6938e1
    [37] Ellington S, Strid P, Tong VT, et al. Characteristics of Women of Reproductive Age with Laboratory-Confirmed SARS-CoV-2 Infection by Pregnancy Status-United States, January 22-June 7, 2020[J]. MMWR Morb Mortal Wkly Rep, 2020, 69: 769-775. doi:  10.15585/mmwr.mm6925a1
    [38] WAPM (World Association of Perinatal Medicine) Working Group on COVID-19. Maternal and perinatal outcomes of pregnant women with SARS-CoV-2 infection[J]. Ultrasound Obstet Gynecol, 2021, 57: 232-241. doi:  10.1002/uog.23107
    [39] Rana MS, Usman M, Alam MM, et al. First trimester miscarriage in a pregnant woman infected with COVID-19 in Pakistan[J]. J Infect, 2021, 82: e27-e28.
    [40] Zhang L, Jiang Y, Wei M, et al. Analysis of the pregnancy outcomes in pregnant women with COVID-19 in Hubei Province[J]. Zhonghua Fu Chan Ke Za Zhi, 2020, 55: 166-171.
    [41] Khoury R, Bernstein PS, Debolt C, et al. Characteristics and Outcomes of 241 Births to Women With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) Infection at Five New York City Medical Centers[J]. Obstet Gynecol, 2020, 136: 273-282. doi:  10.1097/AOG.0000000000004025
    [42] Knight M, Bunch K, Vousden N, et al. Characteristics and outcomes of pregnant women admitted to hospital with confirmed SARS-CoV-2 infection in UK: national population based cohort study[J]. BMJ, 2020, 369: m2107.
    [43] Flaherman VJ, Afshar Y, Boscardin WJ, et al. Infant Outcomes Following Maternal Infection With Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2): First Report From the Pregnancy Coronavirus Outcomes Registry (PRIORITY) Study[J]. Clin Infect Dis, 2021, 73: e2810-e2813. doi:  10.1093/cid/ciaa1411
    [44] Yang H, Sun G, Tang F, et al. Clinical features and outcomes of pregnant women suspected of coronavirus disease 2019[J]. J Infect, 2020, 81: e40-e44. doi:  10.1016/j.jinf.2020.04.003
    [45] Panagiotakopoulos L, Myers TR, Gee J, et al. SARS-CoV-2 Infection Among Hospitalized Pregnant Women: Reasons for Admission and Pregnancy Characteristics-Eight U.S. Health Care Centers, March 1-May 30, 2020[J]. MMWR Morb Mortal Wkly Rep, 2020, 69: 1355-1359. doi:  10.15585/mmwr.mm6938e2
    [46] Joseph NT, Rasmussen SA, Jamieson DJ. The effects of COVID-19 on pregnancy and implications for reproductive medicine[J]. Fertil Steril, 2021, 115: 824-830. doi:  10.1016/j.fertnstert.2020.12.032
    [47] Vivanti AJ, Vauloup-Fellous C, Prevot S, et al. Transplacental transmission of SARS-CoV-2 infection[J]. Nat Commun, 2020, 11: 3572. doi:  10.1038/s41467-020-17436-6
    [48] WHO. Definition and categorization of the timing of mother-to-child transmission of SARS-CoV-2[Z]. 2021.
    [49] Levy A, Yagil Y, Bursztyn M, et al. ACE2 expression and activity are enhanced during pregnancy[J]. Am J Physiol Regul Integr Comp Physiol, 2008, 295: R1953-1961. doi:  10.1152/ajpregu.90592.2008
    [50] Pique-Regi R, Romero R, Tarca AL, et al. Does the human placenta express the canonical cell entry mediators for SARS-CoV-2?[J]. Elife, 2020, 9: e58716. doi:  10.7554/eLife.58716
    [51] Kotlyar AM, Grechukhina O, Chen A, et al. Vertical transmission of coronavirus disease 2019: a systematic review and meta-analysis[J]. Am J Obstet Gynecol, 2021, 224: 35-53. e33. doi:  10.1016/j.ajog.2020.07.049
    [52] Vivanti AJ, Vauloup-Fellous C, Escourrou G, et al. Factors associated with SARS-CoV-2 transplacental transmission[J]. Am J Obstet Gynecol, 2022, 227: 541-543. e11. doi:  10.1016/j.ajog.2022.05.015
    [53] Narang K, Miller M, Trinidad C, et al. Impact of asymptomatic and mild COVID-19 infection on fetal growth during pregnancy[J]. Eur J Obstet Gynecol Reprod Biol, 2023, 281: 63-67. doi:  10.1016/j.ejogrb.2022.12.020
    [54] Yap M, Debenham L, Kew T, et al. Clinical manifestations, prevalence, risk factors, outcomes, transmission, diagnosis and treatment of COVID-19 in pregnancy and postpartum: a living systematic review protocol[J]. BMJ Open, 2020, 10: e041868. doi:  10.1136/bmjopen-2020-041868
    [55] van Doorn AS, Meijer B, Frampton CMA, et al. Systematic review with meta-analysis: SARS-CoV-2 stool testing and the potential for faecal-oral transmission[J]. Aliment Pharmacol Ther, 2020, 52: 1276-1288. doi:  10.1111/apt.16036
    [56] Carosso A, Cosma S, Borella F, et al. Pre-labor anorectal swab for SARS-CoV-2 in COVID-19 pregnant patients: is it time to think about it?[J]. Eur J Obstet Gynecol Reprod Biol, 2020, 249: 98-99. doi:  10.1016/j.ejogrb.2020.04.023
    [57] Centeno-Tablante E, Medina-Rivera M, Finkelstein JL, et al. Transmission of SARS-CoV-2 through breast milk and breastfeeding: a living systematic review[J]. Ann N Y Acad Sci, 2021, 1484: 32-54. doi:  10.1111/nyas.14477
    [58] Demers-Mathieu V, Do DM, Mathijssen GB, et al. Difference in levels of SARS-CoV-2 S1 and S2 subunits-and nucleocapsid protein-reactive SIgM/IgM, IgG and SIgA/IgA antibodies in human milk[J]. J Perinatol, 2021, 41: 850-859. doi:  10.1038/s41372-020-00805-w
    [59] World Health Organization.Clinical management of COVID-19: living guideline, 13 January 2023[EB/OL].(2023-01-13)[2023-06-12] https://apps.who.int/iris/handle/10665/365580.
    [60] Colaco S, Chhabria K, Singh D, et al. Expression map of entry receptors and infectivity factors for pan-coronaviruses in preimplantation and implantation stage human embryos[J]. J Assist Reprod Genet, 2021, 38: 1709-1720. doi:  10.1007/s10815-021-02192-3
    [61] Weatherbee BAT, Glover DM, Zernicka-Goetz M. Expres-sion of SARS-CoV-2 receptor ACE2 and the protease TMPRSS2 suggests susceptibility of the human embryo in the first trimester[J]. Open Biol, 2020, 10: 200162. doi:  10.1098/rsob.200162
    [62] Youngster M, Avraham S, Yaakov O, et al. IVF under COVID-19: treatment outcomes of fresh ART cycles[J]. Hum Reprod, 2022, 37: 947-953. doi:  10.1093/humrep/deac043
    [63] Youngster M, Avraham S, Yaakov O, et al. The impact of past COVID-19 infection on pregnancy rates in frozen embryo transfer cycles[J]. J Assist Reprod Genet, 2022, 39: 1565-1570. doi:  10.1007/s10815-022-02517-w
  • 加载中


    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1165) PDF downloads(97) Cited by()
    Proportional views


    DownLoad:  Full-Size Img  PowerPoint