Volume 14 Issue 2
Mar.  2023
Turn off MathJax
Article Contents
MA Mingsheng, SONG Hongmei. Acceleration of Precision Medicine in Pediatric Rheumatic and Immunologic Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 229-233. doi: 10.12290/xhyxzz.2023-0080
Citation: MA Mingsheng, SONG Hongmei. Acceleration of Precision Medicine in Pediatric Rheumatic and Immunologic Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 229-233. doi: 10.12290/xhyxzz.2023-0080

Acceleration of Precision Medicine in Pediatric Rheumatic and Immunologic Diseases

doi: 10.12290/xhyxzz.2023-0080
Funds:

National Key Research and Development Program of China 2021YFC2702001

CAMS Innovation Fund for Medical Sciences 2021-I2M-C & T-B-008

National High Level Hospital Clinical Research Funding 2022-PUMCH-B-079

More Information
  • Corresponding author: SONG Hongmei, E-mail: songhm1021@126.com
  • Received Date: 2023-02-13
  • Accepted Date: 2023-03-07
  • Available Online: 2023-03-16
  • Publish Date: 2023-03-30
  • Rheumatic and immunologic diseases in children may involve multiple genes and interactions between genetic and environmental factors. There are no validated biomarkers that are predictive of treatment response. Treatment is largely based on symptoms, treatment guidelines, physician experience, and medicine accessibility. The application of precision medicine in pediatric rheumatic and immunologic diseases is in its infancy. This article focuses on the progress of precision medicine in juvenile idiopathic arthritis and pediatric systemic lupus erythematosus, in order to build a precision diagnosis and treatment system for pediatric rheumatic and immunologic diseases, and improve children's quality of life.
  • loading
  • [1] Stoustrup P, Resnick CM, Abramowicz S, et al. Manage-ment of Orofacial Manifestations of Juvenile Idiopathic Arthritis: Interdisciplinary Consensus-Based Recommendations[J]. Arthritis Rheumatol, 2023, 75: 4-14. doi:  10.1002/art.42338
    [2] Malattia C, Tolend M, Mazzoni M, et al. Current status of MR imaging of juvenile idiopathic arthritis[J]. Best Pract Res Clin Rheumatol, 2020, 34: 101629. doi:  10.1016/j.berh.2020.101629
    [3] Combier A, Frantz C, Wipff J, et al. Risk stratification using anti-citrullinated peptide antibodies (ACPA) in polyarticular subtypes of juvenile idiopathic arthritis in adulthood[J]. Joint Bone Spine, 2022, 90: 105501.
    [4] Hersh AO, Prahalad S. Immunogenetics of juvenile idiopa-thic arthritis: A comprehensive review[J]. J Autoimmun, 2015, 64: 113-124. doi:  10.1016/j.jaut.2015.08.002
    [5] Nziza N, Jeziorski E, Delpont M, et al. Synovial-Fluid miRNA Signature for Diagnosis of Juvenile Idiopathic Arthritis[J]. Cells, 2019, 8: 1521. doi:  10.3390/cells8121521
    [6] Brown RA, Henderlight M, Do T, et al. Neutrophils From Children With Systemic Juvenile Idiopathic Arthritis Exhibit Persistent Proinflammatory Activation Despite Long-Standing Clinically Inactive Disease[J]. Front Immunol, 2018, 9: 2995. doi:  10.3389/fimmu.2018.02995
    [7] Cimaz R, Maioli G, Calabrese G. Current and emerging biologics for the treatment of juvenile idiopathic arthritis[J]. Expert Opin Biol Ther, 2020, 20: 725-740. doi:  10.1080/14712598.2020.1733524
    [8] Jing W, Zhang X, Sun W, et al. CRISPR/CAS9-Mediated Genome Editing of miRNA-155 Inhibits Proinflammatory Cytokine Production by RAW264.7 Cells[J]. Biomed Res Int, 2015, 2015: 326042.
    [9] Fattal E, Fay F. Nanomedicine-based delivery strategies for nucleic acid gene inhibitors in inflammatory diseases[J]. Adv Drug Deliv Rev, 2021, 175: 113809. doi:  10.1016/j.addr.2021.05.019
    [10] Verweyen EL, Schulert GS. Interfering with interferons: targeting the JAK-STAT pathway in complications of systemic juvenile idiopathic arthritis (SJIA)[J]. Rheumatology (Oxford), 2022, 61: 926-935. doi:  10.1093/rheumatology/keab673
    [11] Hochberg MC. Updating the American College of Rheumatology revised criteria for the classification of systemic lupus erythematosus[J]. Arthritis Rheum, 1997, 40: 1725.
    [12] Petri M, Orbai AM, Alarcon GS, et al. Derivation and validation of the Systemic Lupus International Collaborating Clinics classification criteria for systemic lupus erythematosus[J]. Arthritis Rheum, 2012, 64: 2677-2686. doi:  10.1002/art.34473
    [13] Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythemato-sus[J]. Arthritis Rheumatol, 2019, 71: 1400-1412. doi:  10.1002/art.40930
    [14] Ma M, Hui-Yuen JS, Cerise JE, et al. Validation of the 2019 European League Against Rheumatism/American College of Rheumatology Criteria Compared to the 1997 American College of Rheumatology Criteria and the 2012 Systemic Lupus International Collaborating Clinics Criteria in Pediatric Systemic Lupus Erythematosus[J]. Arthritis Care Res (Hoboken), 2020, 72: 1597-1601. doi:  10.1002/acr.24057
    [15] Demirkaya E, Sahin S, Romano M, et al. New Horizons in the Genetic Etiology of Systemic Lupus Erythematosus and Lupus-Like Disease: Monogenic Lupus and Beyond[J]. J Clin Med, 2020, 9: 712. doi:  10.3390/jcm9030712
    [16] Batu ED, Kosukcu C, Taskiran E, et al. Whole Exome Sequencing in Early-onset Systemic Lupus Erythematosus[J]. J Rheumatol, 2018, 45: 1671-1679. doi:  10.3899/jrheum.171358
    [17] He Y, Gallman AE, Xie C, et al. P2RY8 variants in lupus patients uncover a role for the receptor in immunological tolerance[J]. J Exp Med, 2022, 219: e20211004. doi:  10.1084/jem.20211004
    [18] Bentham J, Morris DL, Graham DSC, et al. Genetic association analyses implicate aberrant regulation of innate and adaptive immunity genes in the pathogenesis of systemic lupus erythematosus[J]. Nat Genet, 2015, 47: 1457-1464. doi:  10.1038/ng.3434
    [19] Julia A, Lopez-Longo FJ, Perez Venegas JJ, et al. Genome-wide association study meta-analysis identifies five new loci for systemic lupus erythematosus[J]. Arthritis Res Ther, 2018, 20: 100. doi:  10.1186/s13075-018-1604-1
    [20] Martinez-Bueno M, Alarcon-Riquelme ME. Exploring Impact of Rare Variation in Systemic Lupus Erythematosus by a Genome Wide Imputation Approach[J]. Front Immunol, 2019, 10: 258. doi:  10.3389/fimmu.2019.00258
    [21] Omarjee O, Picard C, Frachette C, et al. Monogenic lupus: Dissecting heterogeneity[J]. Autoimmun Rev, 2019, 18: 102361. doi:  10.1016/j.autrev.2019.102361
    [22] Brown GJ, Canete PF, Wang H, et al. TLR7 gain-of-function genetic variation causes human lupus[J]. Nature, 2022, 605: 349-356. doi:  10.1038/s41586-022-04642-z
    [23] Xu L, Zhao J, Sun Q, et al. Loss-of-function variants in SAT1 cause X-linked childhood-onset systemic lupus erythematosus[J]. Ann Rheum Dis, 2022, 81: 1712-1721. doi:  10.1136/annrheumdis-2022-eular.4424
    [24] Wang TY, Wang YF, Zhang Y, et al. Identification of Regulatory Modules That Stratify Lupus Disease Mechanism through Integrating Multi-Omics Data[J]. Mol Ther Nucleic Acids, 2020, 19: 318-329. doi:  10.1016/j.omtn.2019.11.019
    [25] Der E, Suryawanshi H, Morozov P, et al. Tubular cell and keratinocyte single-cell transcriptomics applied to lupus nephritis reveal type I IFN and fibrosis relevant pathways[J]. Nat Immunol, 2019, 20: 915-927. doi:  10.1038/s41590-019-0386-1
    [26] Arazi A, Rao DA, Berthier CC, et al. The immune cell landscape in kidneys of patients with lupus nephritis[J]. Nat Immunol, 2019, 20: 902-914. doi:  10.1038/s41590-019-0398-x
    [27] Nehar-Belaid D, Hong S, Marches R, et al. Mapping systemic lupus erythematosus heterogeneity at the single-cell level[J]. Nat Immunol, 2020, 21: 1094-1106. doi:  10.1038/s41590-020-0743-0
    [28] van Vollenhoven RF, Petri MA, Cervera R, et al. Belimu-mab in the treatment of systemic lupus erythematosus: high disease activity predictors of response[J]. Ann Rheum Dis, 2012, 71: 1343-1349. doi:  10.1136/annrheumdis-2011-200937
    [29] Brunner HI, Abud-Mendoza C, Viola DO, et al. Safety and efficacy of intravenous belimumab in children with systemic lupus erythematosus: results from a randomised, placebo-controlled trial[J]. Ann Rheum Dis, 2020, 79: 1340-1348. doi:  10.1136/annrheumdis-2020-217101
    [30] Furie R, Nicholls K, Cheng TT, et al. Efficacy and safety of abatacept in lupus nephritis: a twelve-month, randomized, double-blind study[J]. Arthritis Rheumatol, 2014, 66: 379-389.
    [31] Group AT. Treatment of lupus nephritis with abatacept: the Abatacept and Cyclophosphamide Combination Efficacy and Safety Study[J]. Arthritis Rheumatol, 2014, 66: 3096-3104. doi:  10.1002/art.38790
    [32] Goldberg A, Geppert T, Schiopu E, et al. Dose-escalation of human anti-interferon-alpha receptor monoclonal antibody MEDI-546 in subjects with systemic sclerosis: a phase 1, multicenter, open label study[J]. Arthritis Res Ther, 2014, 16: R57. doi:  10.1186/ar4492
    [33] Kalunian KC, Merrill JT, Maciuca R, et al. A Phase Ⅱ study of the efficacy and safety of rontalizumab (rhuMAb interferon-alpha) in patients with systemic lupus erythematosus (ROSE)[J]. Ann Rheum Dis, 2016, 75: 196-202. doi:  10.1136/annrheumdis-2014-206090
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3332) PDF downloads(180) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return