Volume 13 Issue 2
Mar.  2022
Turn off MathJax
Article Contents
WANG Guochang, ZHU Zhaohui. Molecular Imaging-guided Precise Theranostics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 165-168. doi: 10.12290/xhyxzz.2021-0773
Citation: WANG Guochang, ZHU Zhaohui. Molecular Imaging-guided Precise Theranostics[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(2): 165-168. doi: 10.12290/xhyxzz.2021-0773

Molecular Imaging-guided Precise Theranostics

doi: 10.12290/xhyxzz.2021-0773
Funds:

National Natural Science Foundation of China 81871392

CAMS Innovation Fund for Medical Sciences 2021-I2M-1-016

The Capital Health Development Scientific Research Project 2018-1-4011

CAMS Clinical and Translational Medicine Research Fund 2019XK320032

More Information
  • Corresponding author: ZHU Zhaohui, E-mail: zhuzhh@pumch.cn
  • Received Date: 2021-12-05
  • Accepted Date: 2021-12-30
  • Available Online: 2022-01-12
  • Publish Date: 2022-03-30
  • In recent years, molecular imaging and precise theranostics have appeared frequently in the Top 10 international hot frontiers in the field of clinical medicine, including accurate diagnosis and therapy of prostate cancer targeting prostate specific membrane antigen (PSMA). Molecular imaging-guided theranostics is a rapidly developing field, which is feasible to find one or more molecular probes for any disease-specific target to observe the in vivo expression and dynamic changes through molecular imaging.The molecular imaging can be applied to accurate diagnosis of diseases, guiding precise therapeutic radionuclide therapy, targeted drugs, and optical imaging-guided surgery. Therefore, it has a great prospect of clinical application and deserves a close attention by the majority of medical researchers and professionals.
  • loading
  • [1] Weissleder R, Tung CH, Mahmood U, et al. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes[J]. Natbiotechnol, 1999, 17: 375-378.
    [2] Zerhouni E. Medicine. The NIH roadmap[J]. Science, 2003, 302: 63-72. doi:  10.1126/science.1091867
    [3] Gimi B, Pathak AP, Ackerstaff E, et al. Molecular imaging of cancer: applications of magnetic resonance methods[J]. Proc IEEE Inst Electr Electron Eng, 2005, 93: 784-799. doi:  10.1109/JPROC.2005.844266
    [4] Lu ZR, Minko T. Molecular imaging for precision medicine[J]. Adv Drug Deliv Rev, 2017, 113: 1-2. doi:  10.1016/j.addr.2017.08.002
    [5] Strosberg J, El-Haddad G, Wolin E, et al. Phase 3 Trial of 177Lu-DOTATATE for Midgut Neuroendocrine Tumors[J]. N Engl J Med, 2017, 376: 125-135. doi:  10.1056/NEJMoa1607427
    [6] Hofman MS, Violet J, Hicks RJ, et al. 177Lu-PSMA-617 radionuclide treatment in patients with metastatic castration-resistant prostate cancer (LuPSMA trial): a single-centre, single-arm, phase 2 study[J]. Lancet Oncol, 2018, 19: 825-833. doi:  10.1016/S1470-2045(18)30198-0
    [7] Liu Q, Zang J, Sui H, et al. Peptide receptor radionuclide therapy of late-stage neuroendocrine tumor patients with multiple cycles of177Lu-DOTA-EB-TATE[J]. J Nucl Med, 2021, 62: 386-392. doi:  10.2967/jnumed.120.248658
    [8] Zang J, Fan X, Wang H, et al. First-in-human study of177Lu-EB-PSMA-617 in patients with metastatic castration-resistant prostate cancer[J]. Eur J Nucl Med Mol Imaging, 2019, 46: 148-158. doi:  10.1007/s00259-018-4096-y
    [9] Osl T, Schmidt A, Schwaiger M, et al. A new class of Pentixa For- and Pentixa Ther-based theranostic agents with enhanced CXCR4-targeting efficiency[J]. Theranostics, 2020, 10: 8264-8280. doi:  10.7150/thno.45537
    [10] Ballal S, Yadav MP, Kramer V, et al. A theranostic approach of[68Ga]Ga-DOTA. SA. FAPi PET/CT-guided[177Lu]Lu-DOTA. SA. FAPi radionuclide therapy in an end-stage breast cancer patient: new frontier in targeted radionuclide therapy[J]. Eur J Nucl Med Mol Imaging, 2021, 48: 942-944. doi:  10.1007/s00259-020-04990-w
    [11] Jauw YW, Zijlstra JM, de Jong D, et al. Performance of 89Zr-labeled-Rituximab-PET as an imaging biomarker to assess CD20 targeting: a pilot study in patients with relapsed/refractory diffuse large B cell lymphoma[J]. PLoS One, 2017, 12: e0169828. doi:  10.1371/journal.pone.0169828
    [12] Biabani Ardakani J, Akhlaghi M, Nikkholgh B, et al. Targeting and imaging of HER2 overexpression tumor with a new peptide-based 68Ga-PET radiotracer[J]. Bioorg Chem, 2021, 106: 104474. doi:  10.1016/j.bioorg.2020.104474
    [13] Sun X, Xiao Z, Chen G, et al. A PET imaging approach for determining EGFR mutation status for improved lung cancer patient management[J]. Sci Transl Med, 2018, 10: eaan8840. doi:  10.1126/scitranslmed.aan8840
    [14] Read ED, Eu P, Little PJ, et al. The status of radioimmunotherapy in CD20+ non-Hodgkin's lymphoma[J]. Target Oncol, 2015, 10: 15-26. doi:  10.1007/s11523-014-0324-y
    [15] Niemeijer AN, Leung D, Huisman MC, et al. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer[J]. Nat Commun, 2018, 9: 4664. doi:  10.1038/s41467-018-07131-y
    [16] Xing Y, Chand G, Liu C, et al. Early phase I study of a 99mTc-labeled anti-programmed death ligand-1 (PD-L1) single-domain antibody in SPECT/CT assessment of PD-L1 expression in non-small cell lung cancer[J]. J Nucl Med, 2019, 60: 1213-1220. doi:  10.2967/jnumed.118.224170
    [17] Hernot S, van Manen L, Debie P, et al. Latest develop-ments in molecular tracers for fluorescence image-guided cancer surgery[J]. Lancet Oncol, 2019, 20: e354-e367.
    [18] He K, Chi C, Li D, et al. Resection and survival data from a clinical trial of glioblastoma multiforme-specific IRDye800-BBN fluorescence-guided surgery[J]. Bioeng Transl Med, 2020, 6: e10182.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Tables(1)

    Article Metrics

    Article views (1143) PDF downloads(519) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return