Citation: | LI Zhuoyuan, XU Guohao, WANG Junchen, WANG Saishuo, WANG Chuantao, ZHAI Jiliang. Research Progress on Generative Adversarial Network in Cross-modal Medical Image Reconstruction[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1162-1169. DOI: 10.12290/xhyxzz.2023-0409 |
[1] |
Yu B, Wang Y, Wang L, et al. Medical image synthesis via deep learning[J]. Adv Exp Med Biol, 2020, 1213: 23-44.
|
[2] |
Luo Y, Nie D, Zhan B, et al. Edge-preserving MRI image synthesis via adversarial network with iterative multi-scale fusion[J]. Neurocomputing, 2021, 452: 63-77. DOI: 10.1016/j.neucom.2021.04.060
|
[3] |
Avants BB, Epstein CL, Grossman M, et al. Symmetric diffeomorphic image registration with cross-correlation: evaluat-ing automated labeling of elderly and neurodegenerative brain[J]. Med Image Anal, 2008, 12: 26-41. DOI: 10.1016/j.media.2007.06.004
|
[4] |
Roy S, Carass A, Shiee N, et al. MR contrast synthesis for lesion segmentation[C]. Proc IEEE Int Symp Biomed Imaging, 2010, 2010: 932-935.
|
[5] |
Ye DH, Zikic D, Glocker B, et al. Modality propagation: coherent synthesis of subject-specific scans with data-driven regularization[C]. Med Image Comput Comput Assist Interv, 2013, 16: 606-613.
|
[6] |
Huynh T, Gao Y, Kang J, et al. Estimating CT image from MRI data using structured random forest and auto-context model[J]. IEEE Trans Med Imaging, 2016, 35: 174-183. DOI: 10.1109/TMI.2015.2461533
|
[7] |
Jog A, Carass A, Roy S, et al. Random forest regression for magnetic resonance image synthesis[J]. Med Image Anal, 2017, 35: 475-488. DOI: 10.1016/j.media.2016.08.009
|
[8] |
Jiang J, Veeraraghavan H. Unified cross-modality feature disentangler for unsupervised multi-domain MRI abdomen organs segmentation[C]. Med Image Comput Comput Assist Interv, 2020, 12262: 347-358.
|
[9] |
Xiong Z, Stiles MK, Yao Y, et al. Automatic 3D surface reconstruction of the left atrium from clinically mapped point clouds using convolutional neural networks[J]. Front Physiol, 2022, 13: 880260. DOI: 10.3389/fphys.2022.880260
|
[10] |
Shen L, Zhao W, Xing L. Patient-specific reconstruction of volumetric computed tomography images from a single projection view via deep learning[J]. Nat Biomed Eng, 2019, 3: 880-888. DOI: 10.1038/s41551-019-0466-4
|
[11] |
Goodfellow I, Pouget-Abadie J, Mirza M, et al. Generative adversarial nets[J]. Adv Neural Inf Process Syst, 2014, 27: 2672-2680.
|
[12] |
Aggarwal A, Mittal M, Battineni G. Generative adversarial network: An overview of theory and applications[J]. Int J Inf Manage, 2021, 1: 100004.
|
[13] |
Wang K, Gou C, Duan Y, et al. Generative adversarial networks: introduction and outlook[J]. IEEE/CAA J Autom Sin, 2017, 4: 588-598. DOI: 10.1109/JAS.2017.7510583
|
[14] |
Singh NK, Raza K. Medical image generation using generative adversarial networks: A review[J]. Health Informatics J, 2021: 77-96.
|
[15] |
Zhou J. Research on Generative Adversarial Networks and Their Applications in Image Generation[C]. IEEE Int Conf Adv Electr Eng Comput Appl, 2022: 1144-1147.
|
[16] |
Ravi D, Blumberg SB, Ingala S, et al. Degenerative adversarial neuroimage nets for brain scan simulations: Applica-tion in ageing and dementia[J]. Med Image Anal, 2022, 75: 102257. DOI: 10.1016/j.media.2021.102257
|
[17] |
Jecklin S, Jancik C, Farshad M, et al. X23D-Intraopera-tive 3D Lumbar Spine Shape Reconstruction Based on Sparse Multi-View X-ray Data[J]. J Imaging, 2022, 8: 271. DOI: 10.3390/jimaging8100271
|
[18] |
Ge R, He Y, Xia C, et al. X-CTRSNet: 3D cervical vertebra CT reconstruction and segmentation directly from 2D X-ray images[J]. Knowl Based Syst, 2022, 236: 107680. DOI: 10.1016/j.knosys.2021.107680
|
[19] |
Ying X, Guo H, Ma K, et al. X2CT-GAN: reconstructing CT from biplanar X-rays with generative adversarial networks[C]. Proc IEEE Comput Soc Vision Pattern Recognit, 2019: 10619-10628.
|
[20] |
Yang CJ, Lin CL, Wang CK, et al. Generative Adversarial Network (GAN) for Automatic Reconstruction of the 3D Spine Structure by Using Simulated Bi-Planar X-ray Images[J]. Diagnostics, 2022, 12: 1121. DOI: 10.3390/diagnostics12051121
|
[21] |
Schock J, Lan YC, Truhn D, et al. Monoplanar CT Reconstruction with GANs[C]. IPTA, 2022: 1-6.
|
[22] |
Sinha A, Sugawara Y, Hirano Y. GA-GAN: CT reconstruction from biplanar DRRs using GAN with guided attention[J]. CORR, 2019. doi: 10.48550/arXiv.1909.12525.
|
[23] |
Zhan B, Xiao J, Cao C, et al. Multi-constraint generative adversarial network for dose prediction in radiotherapy[J]. Med Image Anal, 2022, 77: 102339. DOI: 10.1016/j.media.2021.102339
|
[24] |
Jiang J, Hu YC, Tyagi N, et al. Tumor-aware, adversarial domain adaptation from CT to MRI for lung cancer segmentation[C]. Med Image Comput Comput Assist Interv, 2018: 777-785.
|
[25] |
Jin CB, Kim H, Liu M, et al. Deep CT to MR synthesis using paired and unpaired data[J]. Sensors, 2019, 19: 2361. DOI: 10.3390/s19102361
|
[26] |
Maspero M, Savenije MHF, Dinkla AM, et al. Dose evaluation of fast synthetic-CT generation using a generative adversarial network for general pelvis MR-only radiotherapy[J]. Phys Med Biol, 2018, 63: 185001. DOI: 10.1088/1361-6560/aada6d
|
[27] |
王蕾, 李媛茜. 基于生成对抗网络的CT图像生成[J]. 成都信息工程大学学报, 2021, 36: 286-292. https://www.cnki.com.cn/Article/CJFDTOTAL-CDQX202103008.htm
|
[28] |
Abu-Srhan A, Almallahi I, Abushariah MAM, et al. Paired-unpaired Unsupervised Attention Guided GAN with transfer learning for bidirectional brain MR-CT synthesis[J]. Comput Biol Med, 2021, 136: 104763. DOI: 10.1016/j.compbiomed.2021.104763
|
[29] |
Zhu JY, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. Proc IEEE Comput Soc Vision Pattern Recognit, 2017: 2223-2232.
|
[30] |
吴香奕, 曹锋, 曹瑞芬, 等. 基于循环一致性生成对抗网络的盆腔伪CT生成方法[J]. 中国医学物理学杂志, 2021, 38: 21-29. https://www.cnki.com.cn/Article/CJFDTOTAL-YXWZ202101006.htm
|
[31] |
Zhang Z, Yang L, Zheng Y. Translating and segmenting multimodal medical volumes with cycle-and shape-consistency generative adversarial network[C]. Proc IEEE Comput Soc Vision Pattern Recognit, 2018: 9242-9251.
|
[32] |
Lei Y, Harms J, Wang T, et al. MRI-only based synthetic CT generation using dense cycle consistent generative adversarial networks[J]. Med Phys, 2019, 46: 3565-3581. DOI: 10.1002/mp.13617
|
[33] |
Yang H, Sun J, Carass A, et al. Unsupervised MR-to-CT synthesis using structure-constrained Cycle GAN[J]. IEEE Trans Med Imaging, 2020, 39: 4249-4261 DOI: 10.1109/TMI.2020.3015379
|
[34] |
Liu Y, Lei Y, Wang T, et al. Liver synthetic CT generation based on a dense-Cycle GAN for MRI-only treatment planning[C]. Image Processing, 2020, 11313: 659-664.
|
[35] |
Wang C, Yang G, Papanastasiou G, et al. DiCyc: GAN-based deformation invariant cross-domain information fusion for medical image synthesis[J]. Inf Fusion, 2021, 67: 147-160. DOI: 10.1016/j.inffus.2020.10.015
|
[36] |
Wang R, Bashyam V, Yang Z, et al. Applications of generative adversarial networks in neuroimaging and clinical neuroscience[J]. Neuroimage, 2023, 269: 119898. DOI: 10.1016/j.neuroimage.2023.119898
|
[37] |
Zhang J, He X, Qing L, et al. BPGAN: Brain PET synthesis from MRI using generative adversarial network for multi-modal Alzheimer's disease diagnosis[J]. Comput Meth Prog Bio, 2022, 217: 106676. DOI: 10.1016/j.cmpb.2022.106676
|
[38] |
Hu S, Lei B, Wang S, et al. Bidirectional mapping generative adversarial networks for brain MR to PET synthesis[J]. IEEE Trans Med Imaging, 2021, 4: 145-157.
|
[39] |
Pan Y, Liu M, Lian C, et al. Synthesizing missing PET from MRI with cycle-consistent generative adversarial networks for Alzheimer's disease diagnosis[C]. Med Image Comput Comput Assist Interv, 2018: 455-463.
|
[40] |
Gao X, Shi F, Shen D, et al. Task-induced pyramid and attention GAN for multimodal brain image imputation and classification in alzheimer's disease[J]. IEEE J Biomed Health Inf, 2021, 26: 36-43.
|
[41] |
Yaakub SN, McGinnity CJ, Clough JR, et al. Pseudo-normal PET synthesis with generative adversarial networks for localising hypometabolism in epilepsies[C]. SASHIMI, 2019: 42-51.
|
[42] |
Wei W, Poirion E, Bodini B, et al. Learning myelin content in multiple sclerosis from multimodal MRI through adver-sarial training[C]. Med Image Comput Comput Assist Interv, 2018: 514-522.
|
[43] |
Choi H, Lee DS. Generation of structural MR images from amyloid PET: application to MR-less quantification[J]. J Nucl Med, 2018, 59: 1111-1117. DOI: 10.2967/jnumed.117.199414
|
[44] |
Zhan B, Li D, Wang Y, et al. LR-CGAN: Latent representation based conditional generative adversarial network for multi-modality MRI synthesis[J]. Biomed Signal Process Control, 2021, 66: 102457. DOI: 10.1016/j.bspc.2021.102457
|
[45] |
Zhan B, Zhou L, Li Z, et al. D2FE-GAN: Decoupled dual feature extraction based GAN for MRI image synthesis[J]. Knowl Based Sys, 2022, 252: 109362. DOI: 10.1016/j.knosys.2022.109362
|
[46] |
Ben-Cohen A, Klang E, Raskin SP, et al. Cross-modality synthesis from CT to PET using FCN and GAN networks for improved automated lesion detection[J]. Eng Appl Artif Intell, 2019, 78: 186-194. DOI: 10.1016/j.engappai.2018.11.013
|
[47] |
Dong X, Wang T, Lei Y, et al. Synthetic CT generation from non-attenuation corrected PET images for whole-body PET imaging[J]. Phys Med Biol, 2019, 64: 215016. DOI: 10.1088/1361-6560/ab4eb7
|
[48] |
Armanious K, Jiang C, Fischer M, et al. MedGAN: Medical image translation using GANs[J]. Comput Med Imag Grap, 2020, 79: 101684. DOI: 10.1016/j.compmedimag.2019.101684
|
[49] |
Upadhyay U, Chen Y, Hepp T, et al. Uncertainty-guided progressive GANs for medical image translation[C]. Med Image Comput Comput Assist Interv, 2021: 614-624.
|
[50] |
Tomar D, Lortkipanidze M, Vray G, et al. Self-attentive spatial adaptive normalization for cross-modality domain adaptation[J]. IEEE Trans Med Imaging, 2021, 40: 2926-2938. DOI: 10.1109/TMI.2021.3059265
|
[51] |
Chen J, Wei J, Li R. TarGAN: target-aware generative adversarial networks for multi-modality medical image translation[C]. Med Image Comput Comput Assist Interv, 2021: 24-33.
|
[52] |
Yu B, Zhou L, Wang L, et al. Sample-adaptive GANs: linking global and local mappings for cross-modality MR image synthesis[J]. IEEE Trans Med Imaging, 2020, 39: 2339-2350. DOI: 10.1109/TMI.2020.2969630
|
[1] | YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216 |
[2] | ZHANG Xueyuan, XU Hongyan, DONG Yueming, LIU Danfeng, SUN Pengrui, YAN Rui, CUI Hongliang, LEI Hong, REN Fei. Fungal Microscopic Image Classification Based on Multi-scale Attention Mechanism[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 139-147. DOI: 10.12290/xhyxzz.2022-0169 |
[3] | LIU Yuan, ZHAO Lin. Update and Interpretation of 2022 National Comprehensive Cancer Network Clinical Practice Guidelines for Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 999-1004. DOI: 10.12290/xhyxzz.2022-0271 |
[4] | WANG Jixian, GUI Kun, CHEN Bingxian, RU Guoqing, ZHAO Di, CHEN Wanyuan, ZHANG Zhiyong. Gastric Cancer Diagnostic Model Based on Convolutional Neural Network[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 597-604. DOI: 10.12290/xhyxzz.2022-0021 |
[5] | Teng ZHU, Hong-zhong JIN. mRNA Expression of Methylase and Methyl-CpG Binding Protein in Peripheral Blood Mononuclear Cells from Patients with Generalized Pustular Psoriasis[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(4): 358-363. DOI: 10.3969/j.issn.1674-9081.2019.04.009 |
[6] | Hao SUN, Gu-mu-yang ZHANG, Li-li XU, Zheng-yu JIN. The Value of Radiologist in the New Era's Multidisciplinary Team[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(1): 63-67. DOI: 10.3969/j.issn.1674-9081.2019.01.009 |
[7] | Zheng-yu JIN, Hao SUN. Contemplation of the Clinical Diagnostic Pathway of Radiological Imaging in the New Era[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(1): 2-5. DOI: 10.3969/j.issn.1674-9081.2019.01.001 |
[8] | Hang-ning ZHOU, Feng-ying XIE, Zhi-guo JIANG, Jie LIU, Hong-zhong JIN, Ru-song MENG, Yong CUI. Classification of Skin Images Based on Deep Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 15-18. DOI: 10.3969/j.issn.1674-9081.2018.01.004 |
[10] | Zhi-lan MENG, Liang GAO, Jian-gang GU, Yu-feng LUO, Tao-ling ZHONG, Chen-yan ZHU. Application of Automatic DNA Image Cytometry in Diagnosis of Pleural Effusion[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 36-40. DOI: 10.3969/j.issn.1674-9081.2012.01.009 |