Citation: | ZHANG Xueyuan, XU Hongyan, DONG Yueming, LIU Danfeng, SUN Pengrui, YAN Rui, CUI Hongliang, LEI Hong, REN Fei. Fungal Microscopic Image Classification Based on Multi-scale Attention Mechanism[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 139-147. DOI: 10.12290/xhyxzz.2022-0169 |
[1] |
Chen M, Xu Y, Hong N, et al. Epidemiology of fungal infections in China[J]. Front Med, 2018, 12: 58-75. DOI: 10.1007/s11684-017-0601-0
|
[2] |
Sanguinetti M, Posteraro B, Beigelman-Aubry C, et al. Diagnosis and treatment of invasive fungal infections: looking ahead[J]. J Antimicrob Chemother, 2019, 74: 27-37.
|
[3] |
何文军, 李曼, 李涛, 等. 基于血细胞形态识别的自动检测系统的研发[J]. 现代检验医学杂志, 2019, 34: 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYN201902027.htm
He WJ, Li M, Li T, et al. Study on Automatic Detection System Base on Blood Cell Morphology Recognition[J]. Xiandai Jianyan Yixue Zazhi, 2019, 34: 110-114. https://www.cnki.com.cn/Article/CJFDTOTAL-SXYN201902027.htm
|
[4] |
赵颖, 李志荣, 赵建宏, 等. 河北地区临床实验室丝状真菌分离鉴定情况分析[J]. 中国真菌学杂志, 2020, 15: 206-212. DOI: 10.3969/j.issn.1673-3827.2020.04.004
Zhao Y, Li ZR, Zhao JH, et al. Analysis of filamentous fungi isolations from clinical laboratories in Hebei province[J]. Zhongguo Zhenjunxue Zazhi, 2020, 15: 206-212. DOI: 10.3969/j.issn.1673-3827.2020.04.004
|
[5] |
Tamiev D, Furman PE, Reuel NF. Automated classification of bacterial cell sub-populations with convolutional neural networks[J]. PLoS One, 2020, 15: e0241200. DOI: 10.1371/journal.pone.0241200
|
[6] |
Kulwa F, Li C, Zhang J, et al. A new pairwise deep learning feature for environmental microorganism image analysis[J]. Environ Sci Pollut Res Int, 2022. doi: 10.1007/s11356-022-18849-0.
|
[7] |
Zhang J, Li C, Kosov S, et al. LCU-Net: A novel low-cost U-Net for environmental microorganism image segmentation[J]. Pattern Recogn, 2021, 115: 107885. DOI: 10.1016/j.patcog.2021.107885
|
[8] |
Liang CM, Lai CC, Wang SH, et al. Environmental microorganism classification using optimized deep learning model[J]. Environ Sci Pollut Res Int, 2021, 28: 31920-31932. DOI: 10.1007/s11356-021-13010-9
|
[9] |
李卓识, 陈晓旭, 温长吉, 等. 基于机器学习的鹅膏属真菌形态特征分类模型研究[J]. 中国农机化学报, 2020, 41: 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJH202001026.htm
Li ZS, Chen XX, Wen CJ, et al. Study on classification model of morphological characteristics of amanita fungi based on machine learning[J]. Zhongguo Nongjihua Xuebao, 2020, 41: 136-143. https://www.cnki.com.cn/Article/CJFDTOTAL-GLJH202001026.htm
|
[10] |
Tahir MW, Zaidi NA, Rao AA, et al. A fungus spores dataset and a convolutional neural network based approach for fungus detection[J]. IEEE Transact Nano Biosci, 2018, 17: 281-290.
|
[11] |
Zhang J, Lu S, Wang X, et al. Automatic identification of fungi in microscopic leucorrhea images[J]. J Opt Soc Am A Opt Image Sci Vis, 2017, 34: 1484-1489. DOI: 10.1364/JOSAA.34.001484
|
[12] |
周院. 基于深度学习的真菌图像分类算法研究[D]. 西安: 西安理工大学, 2019.
|
[13] |
郝如茜. 白带显微图像中霉菌自动识别及清洁度判定的研究[D]. 成都: 电子科技大学, 2017.
|
[14] |
Otsu N. A threshold selection method from gray-level histograms[J]. IEEE Transact Syst Man Cyb, 2007, 9: 62-66.
|
[15] |
Hao R, Wang X, Zhang J, et al. Automatic detection of fungi in microscopic leucorrhea images based on convolu-tional neural network and morphological method[C]. 2019 IEEE 3rd Information Technology, Networking, Electronic and Automation Control Conference (ITNEC), 2019: 2491-2494.
|
[16] |
Sandler M, Howard A, Zhu M, et al. Mobilenetv2: Inverted residuals and linear bottlenecks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 4510-4520.
|
[17] |
Deng J, Dong W, Socher R, et al. Imagenet: A large-scale hierarchical image database[C]. 2009 IEEE Conference on Computer Vision and Pattern Recognition, 2009: 248-255.
|
[18] |
Hu J, Shen L, Sun G. Squeeze-and-excitation networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2018: 7132-7141.
|
[19] |
Yu F, Koltun V. Multi-Scale Context Aggregation by Dilated Convolutions[C]. International Conference on Learning Representations, 2016. https://doi.org/10.48550/arXiv.1511.07122.
|
[20] |
He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 770-778.
|
[21] |
Huang G, Liu Z, Laurens V, et al. Densely connected convolutional networks[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2017: 4700-4708.
|
[22] |
Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016: 2818-2826.
|
[23] |
Loshchilov I, Hutter F. SGDR: Stochastic Gradient Descent with Restarts[J]. ICLR 2017 Conference Paper, 2016. https://doi.org/10.48550/arXiv.1608.03983.
|
[24] |
Pan SJ, Qiang Y. A survey on transfer learning[J]. IEEE Transact Knowl Data En, 2010, 22: 1345-1359.
|
[25] |
Selvaraju RR, Cogswell M, Das A, et al. Grad-CAM: Visual explanations from deep networks via gradient-based localization[J]. Int J Comput Vision, 2020, 128: 336-359.
|
[26] |
Mital ME, Tobias RR, Villaruel H, et al. Transfer learning approach for the classification of conidial fungi (genus aspergillus) thru pre-trained deep learning models[C]. 2020 IEEE Region 10 Conference (Tencon), 2020: 1069-1074.
|
[27] |
Billones RK, Calilung EJ, Dadios EP, et al. Aspergillus species fungi identification using microscopic scale images[C]. 2020 IEEE 12th International Conference on Humanoid, Nanotechnology, Information Technology, Communication and Control, Environment, and Management(HNICEM), 2020. doi: 10.1109/HNICEM51456.2020.9400039.
|
[28] |
Zawadzki P. Deep learning approach to the classification of selected fungi and bacteria[C]. 2020 IEEE 21st International Conference on Computational Problems of Electrical Engineering (CPEE), 2020: 1-4.
|
[29] |
Zieliński B, Sroka-Oleksiak A, Rymarczyk D, et al. Deep learning approach to describe and classify fungi microscopic images[J]. PLoS One, 2020, 15: e0234806.
|