Citation: | WANG Jixian, GUI Kun, CHEN Bingxian, RU Guoqing, ZHAO Di, CHEN Wanyuan, ZHANG Zhiyong. Gastric Cancer Diagnostic Model Based on Convolutional Neural Network[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 597-604. DOI: 10.12290/xhyxzz.2022-0021 |
[1] |
Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019[J]. Cancer J Clin, 2019, 69: 7-34. DOI: 10.3322/caac.21551
|
[2] |
Yoshikawa K, Maruyama K. Characteristics of gastric cancer invading to the proper muscle layer-with special reference to mortality and cause of death[J]. JPN J Clin Oncol, 1985, 15: 499-503.
|
[3] |
Everett SM, Axon AT. Early gastric cancer in Europe[J]. Gut, 1997, 41: 142-150. DOI: 10.1136/gut.41.2.142
|
[4] |
Chen W, Zheng R, Baade PD, et al. Cancer statistics in China, 2015[J]. CA Cancer J Clin, 2016, 66: 115-132. DOI: 10.3322/caac.21338
|
[5] |
Oh CM, Won YJ, Jung KW, et al. Cancer statistics in Korea: incidence, mortality, survival, and prevalence in 2013[J]. Cancer Res Treat, 2016, 48: 436-450. DOI: 10.4143/crt.2016.089
|
[6] |
Matsuda T, Ajiki W, Marugame T, et al. Population-based survival of cancer patients diagnosed between 1993 and 1999 in Japan: a chronological and international comparative study[J]. JPN J Clin Oncol, 2011, 41: 40-51. DOI: 10.1093/jjco/hyq167
|
[7] |
Jin L, Shi F, Chun Q, et al. Artificial intelligence neuropathologist for glioma classification using deep learning on hematoxylin and eosin stained slide images and molecular markers[J]. Neuro Oncol, 2021, 23: 44-52. DOI: 10.1093/neuonc/noaa163
|
[8] |
Naik N, Madani A, Esteva A, et al. Deep learning-enabled breast cancer hormonal receptor status determination from base-level H&E stains[J]. Nat Commun, 2020, 11: 5727. DOI: 10.1038/s41467-020-19334-3
|
[9] |
Coudray N, Ocampo PS, Sakellaropoulos T, et al. Classification and mutation prediction from non-small cell lung cancer histopathology images using deep learning[J]. Nat Med, 2018, 24: 1559-1567. DOI: 10.1038/s41591-018-0177-5
|
[10] |
Sharma H, Zerbe N, Klempert I, et al. Deep convolutional neural networks for automatic classification of gastric carcinoma using whole slide images in digital histopathology[J]. Comput Med Imaging Graph, 2017, 61: 2-13. DOI: 10.1016/j.compmedimag.2017.06.001
|
[11] |
Sharma H, Zerbe N, Heim D, et al. A multi-resolution approach for combining visual information usingnuclei segmentation and classification in histopathological images[C]. Proceedings of the 10th International Conference on Com-puter Vision Theoryand Applications (VISAPP 2015), 2015, 3: 37-46.
|
[12] |
Arends MJ, Fukayama M, Klimstra DS, et al. WHO Classification of tumours of the digestive system[M]. 5thed. Lyon: IARC Press, 2019: 1-635.
|
[13] |
Garcia E, Hermoza R, Castanon C B, et al. Automatic Lymphocyte Detection on Gastric Cancer IHC Images Using Deep Learning[C]. IEEE International Symposium on Computer-based Medical Systems, 2017. doi: 10.1109/CBMS.2017.94.
|
[14] |
Tomita N, Abdollahi B, Wei J, et al. Attention-Based Deep Neural Networks for Detection of Cancerous and Precancer-ous Esophagus Tissue on Histopathological Slides[J]. JAMA Netw Open, 2019, 2: e1914645. DOI: 10.1001/jamanetworkopen.2019.14645
|
[15] |
Iizuka O, Kanavati F, Kato K, et al. Deep Learning Models for Histopathological Classification of Gastric and Colonic Epithelial Tumours[J]. Sci Rep, 2020, 10: 1504. DOI: 10.1038/s41598-020-58467-9
|
[16] |
Wang S, Zhu Y, Yu L, et al. RMDL: Recalibrated multi-instance deep learning for whole slide gastric image classification[J]. Med Image Anal, 2019, 58: 101549. DOI: 10.1016/j.media.2019.101549
|
[17] |
Song Z, Zou S, Zhou W, et al. Clinically applicable histopathological diagnosis system for gastric cancer detection using deep learning[J]. Nat Commun, 2020, 11: 4294. DOI: 10.1038/s41467-020-18147-8
|
1. |
朱小红,张云,刘美玲,曹凯. GhostNet轻量级网络在糖尿病视网膜病变诊断中的应用价值. 首都医科大学学报. 2024(04): 678-685 .
![]() | |
2. |
孙伟,史航,黄臻,法良玲. 基于胃组织病理图像数据集的卷积神经网络模型对胃癌的早期预测价值. 川北医学院学报. 2024(07): 877-881 .
![]() |