Hang-ning ZHOU, Feng-ying XIE, Zhi-guo JIANG, Jie LIU, Hong-zhong JIN, Ru-song MENG, Yong CUI. Classification of Skin Images Based on Deep Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 15-18. doi: 10.3969/j.issn.1674-9081.2018.01.004
Citation: Hang-ning ZHOU, Feng-ying XIE, Zhi-guo JIANG, Jie LIU, Hong-zhong JIN, Ru-song MENG, Yong CUI. Classification of Skin Images Based on Deep Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 15-18. doi: 10.3969/j.issn.1674-9081.2018.01.004

Classification of Skin Images Based on Deep Learning

doi: 10.3969/j.issn.1674-9081.2018.01.004
More Information
  • Corresponding author: XIE Feng-ying Tel:010-82339249, E-mail:xfy_73@buaa.edu.cn
  • Received Date: 2017-06-20
  • Publish Date: 2018-01-30
  • With the advent of the big data era, deep learning has made remarkable breakthroughs compared with traditional pattern-recognition methods in many tasks, such as image classification and detection. In January 2017, the artificial intelligence laboratory of Stanford University applied deep learning to automatic classification of clinical skin images and dermoscopy images, and published the research results in Nature, which represents the latest research progress in the field of automatic analysis of skin images. Herein, we interpret this research from the aspects of database establishment, design of research methods and analysis of the experimental results; we also elaborate the current research status of computer-aided diagnosis of skin images in China, as well as the future developmental prospect of multi-source big data analysis of skin images and intelligent auxiliary diag-nosis, in order to promote the medical diagnostic level of skin diseases in China.
  • loading
  • [1] Schmid-Saugeona P, Guillodb J, Thirana JP.Towards a computeraided diagnosis system for pigmented skin lesions[J]. Comput Med Imaging Graph, 2003, 27:65-78. doi:  10.1016/S0895-6111(02)00048-4
    [2] Abbas Q, Celebi ME, García IF. Hair removal methods:a comparative study for dermoscopy images[J]. Biomed Signal Process Control, 2011, 6:395-404. doi:  10.1016/j.bspc.2011.01.003
    [3] Xie F, Bovik AC. Automatic segmentation of dermoscopy images using self-generating neural networks seeded by genetic algorithm[J]. Pattern Recognition, 2013, 46:1012-1019. doi:  10.1016/j.patcog.2012.08.012
    [4] Sáez A, Serrano C, Acha B. Model-based classification methods of global patterns in dermoscopic images[J]. IEEE Trans Med Imaging, 2014, 33:1137-1147. doi:  10.1109/TMI.2014.2305769
    [5] Isasi AG, Zapirain BG, Zorrilla AM. Mendez. Melanomas Non-invasive Diagnosis Application Based on the ABCD Rule and Pattern Recognition Image Processing Algorithms[J]. Comput Biol Med, 2011, 41:742-755. doi:  10.1016/j.compbiomed.2011.06.010
    [6] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521:436-444. doi:  10.1038/nature14539
    [7] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classifica-tion with deep convolutional neural networks[C]. Interna-tional Conference on Neural Information Processing Systems, 2012: 1097-1105.
    [8] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the Inception Architecture for Computer Vision[J]. Computer Science, 2015:2818-2826. doi:  10.1109/CVPR.2016.308
    [9] Ren S, He K, Girshick R, et al. Faster R-CNN:towards real-time object detection with region proposal networks[J]. IEEE Trans Pattern Anal Mach Intell, 2017, 39:1137-1149. doi:  10.1109/TPAMI.2016.2577031
    [10] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542:115. doi:  10.1038/nature21056
    [11] Masood A, Aljumaily AA. Computer aided diagnostic support system for skin cancer:a review of techniques and algorithms[J]. Int J Biomed Imaging, 2013, 2013:323268. https://www.hindawi.com/journals/ijbi/2013/323268/
    [12] Ramlakhan K, Shang Y. A mobile automated skin lesion classification system[C]. IEEE International Conference on TOOLS with Artificial Intelligence, 2011: 138-141.
    [13] https://www.ericsson.com/res/docs/2016/ericsson-mobility-report-2016.pdf (2016).
    [14] Han S, Mao H, Dally WJ. Deep compression:compressing deep neural networks with pruning, trained quantization and huffman coding[J]. Fiber, 2016, 56:3-7. https://arxiv.org/abs/1510.00149
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Figures(2)

    Article Metrics

    Article views (399) PDF downloads(532) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return