Citation: | WU Ziyan, FENG Futai, LI Haolong, XU Honglin, ZHANG Shulan, LI Yongzhe. Quantitative Analysis of Mitochondrial Damage in T Lymphocytes from Patients with Autoimmune Diseases and Evaluation of Its Clinical Value[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 991-998. DOI: 10.12290/xhyxzz.2023-0256 |
[1] |
Pisetsky DS. Pathogenesis of autoimmune disease[J]. Nat Rev Nephrol, 2023, 19: 509-524.
|
[2] |
Aringer M, Costenbader K, Daikh D, et al. 2019 European League Against Rheumatism/American College of Rheumatology Classification Criteria for Systemic Lupus Erythe-matosus[J]. Arthritis Rheumatol, 2019, 71: 1400-1412. DOI: 10.1002/art.40930
|
[3] |
Kay J, Upchurch KS. ACR/EULAR 2010 rheumatoid arthritis classification criteria[J]. Rheumatology, 2012, 51: vi5-vi9. DOI: 10.1093/rheumatology/ker193
|
[4] |
Shiboski CH, Shiboski SC, Seror R, et al. 2016 American College of Rheumatology/European League Against Rheumatism Classification Criteria for Primary Sjögren's Syndrome: A Consensus and Data-Driven Methodology Involving Three International Patient Cohorts[J]. Arthritis Rheumatol, 2017, 69: 35-45. DOI: 10.1002/art.39859
|
[5] |
Soriano BL, Brenner D. Metabolism and epigenetics at the heart of T cell function[J]. Trends Immunol, 2023, 44: 231-244. DOI: 10.1016/j.it.2023.01.002
|
[6] |
Becker YLC, Duvvuri B, Fortin PR, et al. The role of mitochondria in rheumatic diseases[J]. Nat Rev Rheumatol, 2022, 18: 621-640. DOI: 10.1038/s41584-022-00834-z
|
[7] |
Chen PM, Tsokos GC. Mitochondria in the Pathogenesis of Systemic Lupus Erythematosus[J]. Curr Rheumatol Rep, 2022, 24: 88-95. DOI: 10.1007/s11926-022-01063-9
|
[8] |
Clayton SA, MacDonald L, Kurowska SM, et al. Mitochondria as Key Players in the Pathogenesis and Treatment of Rheumatoid Arthritis[J]. Front Immunol, 2021, 12: 673916. DOI: 10.3389/fimmu.2021.673916
|
[9] |
Faas MM, de Vos P. Mitochondrial function in immune cells in health and disease[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866: 165845. DOI: 10.1016/j.bbadis.2020.165845
|
[10] |
Jiao Y, Yan Z, Yang A. Mitochondria in innate immunity signaling and its therapeutic implications in autoimmune diseases[J]. Clin Exp Immunol, 2023, 14: 1160035.
|
[11] |
Saadh MJ, Kazemi K, Khorramdelazad H, et al. Role of T cells in the pathogenesis of systemic lupus erythematous: Focus on immunometabolism dysfunctions[J]. Int Immunopharmacol, 2023, 119: 110246. DOI: 10.1016/j.intimp.2023.110246
|
[12] |
Shu P, Liang H, Zhang J, et al. Reactive oxygen species formation and its effect on CD4(+) T cell-mediated inflammation[J]. Front Immunol, 2023, 14: 1199233. DOI: 10.3389/fimmu.2023.1199233
|
[13] |
Quintero GDC, Muñoz UM, Vásquez G. Mitochondria as a key player in systemic lupus erythematosus[J]. Autoimmunity, 2022, 55: 497-505. DOI: 10.1080/08916934.2022.2112181
|
[14] |
Chávez MD, Tse HM. Targeting Mitochondrial-Derived Reactive Oxygen Species in T Cell-Mediated Autoimmune Diseases[J]. Front Immunol, 2021, 12: 703972. DOI: 10.3389/fimmu.2021.703972
|
[15] |
Weyand CM, Wu B, Huang T, et al. Mitochondria as disease-relevant organelles in rheumatoid arthritis[J]. Clin Exp Immunol, 2023, 211: 208-223. DOI: 10.1093/cei/uxac107
|
[16] |
Gergely PJ, Grossman C, Niland B, et al. Mitochondrial hyperpolarization and ATP depletion in patients with systemic lupus erythematosus[J]. Arthritis Rheum, 2002, 46: 175-190. DOI: 10.1002/1529-0131(200201)46:1<175::AID-ART10015>3.0.CO;2-H
|
[17] |
Wahl DR, Petersen B, Warner R, et al. Characterization of the metabolic phenotype of chronically activated lymphocytes[J]. Lupus, 2010, 19: 1492-1501. DOI: 10.1177/0961203310373109
|
[18] |
Lee HT, Lin CS, Lee CS, et al. Increased 8-hydroxy-2'-deoxyguanosine in plasma and decreased mRNA expres-sion of human 8-oxoguanine DNA glycosylase 1, anti-oxidant enzymes, mitochondrial biogenesis-related proteins and glycolytic enzymes in leucocytes in patients with systemic lupus erythematosus[J]. Clin Exp Immunol, 2014, 176: 66-77. DOI: 10.1111/cei.12256
|
[19] |
Lee HT, Lin CS, Pan SC, et al. Alterations of oxygen consumption and extracellular acidification rates by glutamine in PBMCs of SLE patients[J]. Mitochondrion, 2019, 44: 65-74. DOI: 10.1016/j.mito.2018.01.002
|
[20] |
Lee HT, Wu TH, Lin CS, et al. Oxidative DNA and mitochondrial DNA change in patients with SLE[J]. Front Biosci, 2017, 22: 493-503. DOI: 10.2741/4497
|
[21] |
Warner LM, Adams LM, Sehgal SN. Rapamycin prolongs survival and arrests pathophysiologic changes in murine systemic lupus erythematosus[J]. Arthritis Rheum, 1994, 37: 289-297. DOI: 10.1002/art.1780370219
|
[22] |
Hajizadeh S, DeGroot J, TeKoppele JM, et al. Extracellular mitochondrial DNA and oxidatively damaged DNA in synovial fluid of patients with rheumatoid arthritis[J]. Arthritis Res Ther, 2003, 5: R234-R240. DOI: 10.1186/ar787
|
[23] |
Li Y, Shen Y, Jin K, et al. The DNA Repair Nuclease MRE11A Functions as a Mitochondrial Protector and Prevents T Cell Pyroptosis and Tissue Inflammation[J]. Cell Metab, 2019, 30: 477-492. e476. DOI: 10.1016/j.cmet.2019.06.016
|
[24] |
Yang Z, Fujii H, Mohan SV, et al. Phosphofructokinase deficiency impairs ATP generation, autophagy, and redox balance in rheumatoid arthritis T cells[J]. J Exp Med, 2013, 210: 2119-2134. DOI: 10.1084/jem.20130252
|
[25] |
Li N, Li Y, Hu J, et al. A Link Between Mitochondrial Dysfunction and the Immune Microenvironment of Salivary Glands in Primary Sjögren's Syndrome[J]. Front Immunol, 2022, 13: 845209. DOI: 10.3389/fimmu.2022.845209
|
[26] |
Mankowski RT, Wohlgemuth SE, Bresciani G, et al. Intraoperative Hemi-Diaphragm Electrical Stimulation Demons-trates Attenuated Mitochondrial Function without Change in Oxidative Stress in Cardiothoracic Surgery Patients[J]. Antioxidants (Basel), 2023, 12: 1009. DOI: 10.3390/antiox12051009
|
[27] |
Yennemadi AS, Keane J, Leisching G. Mitochondrial bioenergetic changes in systemic lupus erythematosus immune cell subsets: Contributions to pathogenesis and clinical applications[J]. Lupus, 2023, 32: 603-611. DOI: 10.1177/09612033231164635
|
[28] |
Nanto HF, Yamazaki M, Murakami H, et al. Chronic heat stress induces renal fibrosis and mitochondrial dysfunction in laying hens[J]. J Anim Sci Biotechnol, 2023, 14: 81. DOI: 10.1186/s40104-023-00878-5
|
[29] |
Zhang S, Lv Y, Luo X, et al. Homocysteine promotes atherosclerosis through macrophage pyroptosis via endoplasmic reticulum stress and calcium disorder[J]. Mol Med, 2023, 29: 73.
|
[30] |
Ren X, Zhou H, Sun Y, et al. MIRO-1 interacts with VDAC-1 to regulate mitochondrial membrane potent ial in Caenorhabditis elegans[J]. EMBO Rep, 2023, 24: e56297. DOI: 10.15252/embr.202256297
|
[31] |
Clifton LA, Wacklin KHP, Ådén J, et al. Creation of distinctive Bax-lipid complexes at mitochondrial membrane surfaces drives pore formation to initiate apoptosis[J]. Sci adv, 2023, 9: eadg7940. DOI: 10.1126/sciadv.adg7940
|
[1] | YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216 |
[2] | WANG Xianze, PING Lu, WU Wenming. Deriving New Ideas for the Diagnosis and Treatment of Pancreatic Neuroendocrine Neoplasms from Basic Research[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 734-739. DOI: 10.12290/xhyxzz.2024-0386 |
[3] | ZHAO Luo, HE Jia, QIN Yingzhi, HAN Zhijun, LIU Hongsheng, LI Shanqing, LI Li. Application of Laparoscopic Jejunostomy in Minimal Invasive McKeown Esophagectomy[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 845-851. DOI: 10.12290/xhyxzz.2021-0635 |
[4] | GAO Yuanjing, ZHU Qingli, JIANG Yuxin. Research Progress of Ultrasound Radiomics in Predicting Axillary Lymph Node Metastasis of Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 989-993. DOI: 10.12290/xhyxzz.2021-0187 |
[5] | LUO Yanwen, ZHU Qingli. Application of Radiomics in Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 983-988. DOI: 10.12290/xhyxzz.2021-0011 |
[6] | SU Baiyan, QI Yafei, GUAN Hui, HE Yonglan, XUE Huadan, JIN Zhengyu. Texture Analysis of Sequential Images of T2-weighted Imaging and Diffusion-weighted Imaging for Predicting the Efficacy of Chemoradiotherapy in Cervical Squamous Cell Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 713-720. DOI: 10.12290/xhyxzz.2021-0380 |
[7] | ZHANG Gumuyang, XU Lili, MAO Li, LI Xiuli, JIN Zhengyu, SUN Hao. CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 698-704. DOI: 10.12290/xhyxzz.2021-0511 |
[8] | Jian-feng HE, Lei LIU, Jin-hao LYU, Ning MA, Zhi-cheng LI, Lin MA, Xin LOU. Radiomic Features of Atherosclerotic Plaques in the Anterior and Posterior Intracranial Circulation: Multicenter Prospective Study[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(1): 53-58. DOI: 10.3969/j.issn.1674-9081.2019.01.007 |
[9] | Zai-yi LIU. Clinical Value and Challenges of Radiomics[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 295-297. DOI: 10.3969/j.issn.1674-9081.2018.04.002 |
[10] | Jie SHI, Zhi-yong LIANG, Tong-hua LIU. Expression of Cyclin D1 in Invasive Lobular Carcinoma of the Breast and Its Significance[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(1): 8-12. DOI: 10.3969/j.issn.1674-9081.2012.01.004 |
1. |
徐梓安,杨希,陈辉,胡丽,刘泓源,周经纬,林晓曦. ROADMAP功能在DSA引导下静脉畸形血管内硬化治疗的应用研究. 中国美容整形外科杂志. 2022(12): 705-708 .
![]() |