Citation: | GAO Yuanjing, ZHU Qingli, JIANG Yuxin. Research Progress of Ultrasound Radiomics in Predicting Axillary Lymph Node Metastasis of Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 989-993. DOI: 10.12290/xhyxzz.2021-0187 |
[1] |
DeSantis C, Ma J, Bryan L, et al. Breast cancer statistics, 2013[J]. CA Cancer J Clin, 2014, 64: 52-62. DOI: 10.3322/caac.21203
|
[2] |
李贺, 郑荣寿, 张思维. 2014年中国女性乳腺癌发病与死亡分析[J]. 中华肿瘤杂志, 2018, 40: 166-171. DOI: 10.3760/cma.j.issn.0253-3766.2018.03.002
Li H, Zheng RS, Zhang SW, et al. Incidence and mortality of female breast cancer in China, 2014[J]. Zhonghua Zhongliu Zazhi, 2018, 40: 166-171. DOI: 10.3760/cma.j.issn.0253-3766.2018.03.002
|
[3] |
Harbeck N, Gnant M. Breast cancer[J]. Lancet, 2017, 389: 1134-1150. DOI: 10.1016/S0140-6736(16)31891-8
|
[4] |
de Boer M, van Deurzen CH, van Dijck JA, et al. Micrometastases or isolated tumor cells and the outcome of breast cancer[J]. N Engl J Med, 2009, 361: 653-663. DOI: 10.1056/NEJMoa0904832
|
[5] |
Napel S, Mu W, Jardim-Perassi BV, et al. Quantitative imaging of cancer in the postgenomic era: Radio(geno)mics, deep learning, and habitats[J]. Cancer, 2018, 124: 4633-4649. DOI: 10.1002/cncr.31630
|
[6] |
Giuliano AE, Ballman KV, McCall L, et al. Effect of Axillary Dissection vs No Axillary Dissection on 10-Year Overall Survival Among Women With Invasive Breast Cancer and Sentinel Node Metastasis: The ACOSOG Z0011 (Alliance) Randomized Clinical Trial[J]. JAMA, 2017, 318: 918-926. DOI: 10.1001/jama.2017.11470
|
[7] |
Lyman GH, Somerfield MR, Bosserman LD, et al. Sentinel Lymph Node Biopsy for Patients With Early-Stage Breast Cancer: American Society of Clinical Oncology Clinical Practice Guideline Update[J]. J Clin Oncol, 2017, 35: 561-564.
|
[8] |
Valente SA, Levine GM, Silverstein MJ, et al. Accuracy of predicting axillary lymph node positivity by physical examination, mammography, ultrasonography, and magnetic resonance imaging[J]. Ann Surg Oncol, 2012, 19: 1825-1830. DOI: 10.1245/s10434-011-2200-7
|
[9] |
Alvarez S, Añorbe E, Alcorta P, et al. Role of sonography in the diagnosis of axillary lymph node metastases in breast cancer: a systematic review[J]. AJR Am J Roentgenol, 2006, 186: 1342-1348. DOI: 10.2214/AJR.05.0936
|
[10] |
Cools-Lartigue J, Meterissian S. Accuracy of axillary ultrasound in the diagnosis of nodal metastasis in invasive breast cancer: a review[J]. World J Surg, 2012, 36: 46-54. DOI: 10.1007/s00268-011-1319-9
|
[11] |
Engohan-Aloghe C, Hottat N, Noël JC. Accuracy of lymph nodes cell block preparation according to ultrasound features in preoperative staging of breast cancer[J]. Diagn Cytopathol, 2010, 38: 5-8. http://www.onacademic.com/detail/journal_1000033827615110_890a.html
|
[12] |
Chen X, He Y, Wang J, et al. Feasibility of using negative ultrasonography results of axillary lymph nodes to predict sentinel lymph node metastasis in breast cancer patients[J]. Cancer Med, 2018, 7: 3066-3072. DOI: 10.1002/cam4.1606
|
[13] |
Zhu Y, Zhou W, Jia XH, et al. Preoperative Axillary Ultrasound in the Selection of Patients With a Heavy Axillary Tumor Burden in Early-Stage Breast Cancer: What Leads to False-Positive Results?[J]. J Ultrasound Med, 2018, 37: 1357-1365. DOI: 10.1002/jum.14545
|
[14] |
Ahmed M, Jozsa F, Baker R, et al. Meta-analysis of tumour burden in pre-operative axillary ultrasound positive and negative breast cancer patients[J]. Breast Cancer Res Treat, 2017, 166: 329-336. DOI: 10.1007/s10549-017-4405-3
|
[15] |
Bevilacqua JL, Kattan MW, Fey JV, et al. Doctor, what are my chances of having a positive sentinel node? A validated nomogram for risk estimation[J]. J Clin Oncol, 2007, 25: 3670-3679. DOI: 10.1200/JCO.2006.08.8013
|
[16] |
Chue KM, Yong WS, Thike AA, et al. Predicting the likelihood of additional lymph node metastasis in sentinel lymph node positive breast cancer: validation of the Memorial Sloan-Kettering Cancer Centre (MSKCC) nomogram[J]. J Clin Pathol, 2014, 67: 112-119. DOI: 10.1136/jclinpath-2013-201524
|
[17] |
Rouzier R, Uzan C, Rousseau A, et al. Multicenter prospective evaluation of the reliability of the combined use of two models to predict non-sentinel lymph node status in breast cancer patients with metastatic sentinel lymph nodes: the MSKCC nomogram and the Tenon score. Results of the NOTEGS study[J]. Br J Cancer, 2017, 116: 1135-1140. DOI: 10.1038/bjc.2017.47
|
[18] |
Barranger E, Coutant C, Flahault A, et al. An axilla scoring system to predict non-sentinel lymph node status in breast cancer patients with sentinel lymph node involvement[J]. Breast Cancer Res Treat, 2005, 91: 113-119. DOI: 10.1007/s10549-004-5781-z
|
[19] |
Coutant C, Rouzier R, Fondrinier E, et al. Validation of the Tenon breast cancer score for predicting non-sentinel lymph node status in breast cancer patients with sentinel lymph node metastasis: a prospective multicenter study[J]. Breast Cancer Res Treat, 2009, 113: 537-543. DOI: 10.1007/s10549-008-9967-7
|
[20] |
Han L, Zhu Y, Liu Z, et al. Radiomic nomogram for prediction of axillary lymph node metastasis in breast cancer[J]. Eur Radiol, 2019, 29: 3820-3829. DOI: 10.1007/s00330-018-5981-2
|
[21] |
van Griethuysen JJM, Fedorov A, Parmar C, et al. Computational Radiomics System to Decode the Radiographic Phenotype[J]. Cancer Res, 2017, 77: e104-e107. DOI: 10.1158/0008-5472.CAN-17-0339
|
[22] |
Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278: 563-577. DOI: 10.1148/radiol.2015151169
|
[23] |
Fung AD, Collins JA, Campassi C, et al. Performance characteristics of ultrasound-guided fine-needle aspiration of axillary lymph nodes for metastatic breast cancer employing rapid on-site evaluation of adequacy: analysis of 136 cases and review of the literature[J]. Cancer Cytopathol, 2014, 122: 282-291. DOI: 10.1002/cncy.21384
|
[24] |
Lee SE, Sim Y, Kim S, et al. Predictive performance of ultrasonography-based radiomics for axillary lymph node metastasis in the preoperative evaluation of breast cancer[J]. Ultrasonography, 2021, 40: 93-102. DOI: 10.14366/usg.20026
|
[25] |
Gao Y, Luo Y, Zhao C, et al. Nomogram based on radiomics analysis of primary breast cancer ultrasound images: prediction of axillary lymph node tumor burden in patients[J]. Eur Radiol, 2021, 31: 928-937. DOI: 10.1007/s00330-020-07181-1
|
[26] |
Yu FH, Wang JX, Ye XH, et al. Ultrasound-based radiomics nomogram: A potential biomarker to predict axillary lymph node metastasis in early-stage invasive breast cancer[J]. Eur J Radiol, 2019, 119: 108658. DOI: 10.1016/j.ejrad.2019.108658
|
[27] |
Qiu X, Jiang Y, Zhao Q, et al. Could Ultrasound-Based Radiomics Noninvasively Predict Axillary Lymph Node Metastasis in Breast Cancer?[J]. J Ultrasound Med, 2020, 39: 1897-1905. DOI: 10.1002/jum.15294
|
[28] |
Tibshirani R. Regression Shrinkage and Selection Via the Lasso[J]. J R Stat Soc Series B Stat Methodol, 1996, 58: 267-288. http://www.stat.ohio-state.edu/~yklee/882/yongganglasso.pdf
|
[29] |
Koelliker SL, Chung MA, Mainiero MB, et al. Axillary lymph nodes: US-guided fine-needle aspiration for initial staging of breast cancer--correlation with primary tumor size[J]. Radiology, 2008, 246: 81-89. DOI: 10.1148/radiol.2463061463
|
[30] |
Bevers TB, Helvie M, Bonaccio E, et al. Breast Cancer Screening and Diagnosis, Version 3.2018, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2018, 16: 1362-1389. DOI: 10.6004/jnccn.2018.0083
|
[31] |
Zhou LQ, Wu XL, Huang SY, et al. Lymph Node Metastasis Prediction from Primary Breast Cancer US Images Using Deep Learning[J]. Radiology, 2020, 294: 19-28. DOI: 10.1148/radiol.2019190372
|
[32] |
Sun Q, Lin X, Zhao Y, et al. Deep Learning vs. Radiomics for Predicting Axillary Lymph Node Metastasis of Breast Cancer Using Ultrasound Images: Don't Forget the Peritumoral Region[J]. Front Oncol, 2020, 10: 53. DOI: 10.3389/fonc.2020.00053
|
[33] |
Cheon H, Kim HJ, Kim TH, et al. Invasive Breast Cancer: Prognostic Value of Peritumoral Edema Identified at Preoperative MR Imaging[J]. Radiology, 2018, 287: 68-75. DOI: 10.1148/radiol.2017171157
|
[34] |
Zhou J, Zhan W, Dong Y, et al. Stiffness of the surround-ing tissue of breast lesions evaluated by ultrasound elastography[J]. Eur Radiol, 2014, 24: 1659-1667. DOI: 10.1007/s00330-014-3152-7
|
[35] |
Zheng X, Yao Z, Huang Y, et al. Deep learning radiomics can predict axillary lymph node status in early-stage breast cancer[J]. Nat Commun, 2020, 11: 1236. DOI: 10.1038/s41467-020-15027-z
|
[36] |
Guo X, Liu Z, Sun C, et al. Deep learning radiomics of ultrasonography: Identifying the risk of axillary non-sentinel lymph node involvement in primary breast cancer[J]. EBioMedicine, 2020, 60: 103018. DOI: 10.1016/j.ebiom.2020.103018
|
[37] |
索静峰, 张麒, 常婉英, 等. 依托弹性与B型双模态超声影像组学的腋窝淋巴结转移评价[J]. 中国医疗器械杂志, 2017, 41: 313-316. DOI: 10.3969/j.issn.1671-7104.2017.05.001
Suo JF, Zhang L, Chang WY, et al. Evaluation of Axillary Lymph Node Metastasis by Using Radiomics of Dual-modal Ultrasound Composed of Elastography and B-mode[J]. Zhongguo Yiliao Qixie Zazhi, 2017, 41: 313-316. DOI: 10.3969/j.issn.1671-7104.2017.05.001
|
[38] |
Turner RR, Chu KU, Qi K, et al. Pathologic features associated with nonsentinel lymph node metastases in patients with metastatic breast carcinoma in a sentinel lymph node[J]. Cancer, 2000, 89: 574-581. DOI: 10.1002/1097-0142(20000801)89:3<574::AID-CNCR12>3.0.CO;2-Y
|
[39] |
Li Q, Bai H, Chen Y, et al. A Fully-Automatic Multiparametric Radiomics Model: Towards Reproducible and Prognostic Imaging Signature for Prediction of Overall Survival in Glioblastoma Multiforme[J]. Sci Rep, 2017, 7: 14331. DOI: 10.1038/s41598-017-14753-7
|
[40] |
Ford RA, Price Ⅱ WN. Privacy and Accountability in Black-Box Medicine[EB/OL]. (2016-07-14)[2021-02-08]. https://papers.ssrn.com/sol3/papers.cfm?abstract_id=2758121.
|
[1] | ZHAO Zeqing, PAN Hui, ZHANG Li, WANG Fengdan, CHEN Shi, YANG Xiao, LI Jianchu. Research Status and Application Prospect of Bone Age Assessment by Ultrasonography[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 400-405. DOI: 10.12290/xhyxzz.2023-0270 |
[2] | LIU Chang, ZHENG Yuchao, XIE Wenqian, LI Chen, LI Xiaohan. Image Recognition Method of Cervical Adenocarcinoma in Situ Based on Deep Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 159-167. DOI: 10.12290/xhyxzz.2022-0109 |
[3] | ZHAO Chen-yang, ZHU Qing-li, ZHANG Rui, QI Zhen-hong, YANG Meng, JIANG Yu-xin. The Potential Value of Photoacoustic Imaging in the Assessment of Inflammatory Changes of Joints[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 232-237. DOI: 10.12290/xhyxzz.20190139 |
[4] | Zhi-qun XING, Xiao-ting WANG, Da-wei LIU. Critical Ultrasonography: Hemodynamic Helper[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 461-464. DOI: 10.3969/j.issn.1674-9081.2019.05.007 |
[5] | Rui-feng LIU, Yu XIA, Yu-xin JIANG. Application of Artificial Intelligence in Ultrasound Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 453-457. DOI: 10.3969/j.issn.1674-9081.2018.05.015 |
[6] | Jia-yu MAO, Xiao-ting WANG, Da-wei LIU. Importance of Critical Ultrasonography to Comprehensive Etiologic Management in Critical Care Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 404-406. DOI: 10.3969/j.issn.1674-9081.2018.05.005 |
[7] | Hang-ning ZHOU, Feng-ying XIE, Zhi-guo JIANG, Jie LIU, Hong-zhong JIN, Ru-song MENG, Yong CUI. Classification of Skin Images Based on Deep Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 15-18. DOI: 10.3969/j.issn.1674-9081.2018.01.004 |
[8] | Li-ming XIA, Jian SHEN, Rong-guo ZHANG, Shao-kang WANG, Kuan CHEN. Application of Deep Learning in Medical Imaging Research[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 10-14. DOI: 10.3969/j.issn.1674-9081.2018.01.003 |
[9] | Fang YAO, Ai-ming YANG, Dong-sheng WU, Xi WU, Tao GUO, Wei-xun ZHOU, Xing-hua LU. Diagnostic Value of Miniprobe Endoscopic Ultrasonography in Assessment of Tumor Invasion Depth in Early Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2015, 6(2): 83-88. DOI: 10.3969/j.issn.1674-9081.2015.02.002 |
[10] | Introduction to Vascular Ultrasonography (6th ed.)(2012)[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(1): 87-87. |