Li-ming XIA, Jian SHEN, Rong-guo ZHANG, Shao-kang WANG, Kuan CHEN. Application of Deep Learning in Medical Imaging Research[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 10-14. doi: 10.3969/j.issn.1674-9081.2018.01.003
Citation: Li-ming XIA, Jian SHEN, Rong-guo ZHANG, Shao-kang WANG, Kuan CHEN. Application of Deep Learning in Medical Imaging Research[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 10-14. doi: 10.3969/j.issn.1674-9081.2018.01.003

Application of Deep Learning in Medical Imaging Research

doi: 10.3969/j.issn.1674-9081.2018.01.003
More Information
  • Corresponding author: SHEN Jian Tel:010-85795622, E-mail:contact@infervision.com
  • Received Date: 2017-10-11
  • Publish Date: 2018-01-30
  • Deep learning, as the most popular research field in artificial intelligence, has been developing rapidly in recent years and become the focus of global attention. Deep learning has demonstrated a powerful role in many application areas. In some visual and auditory recognition tasks, deep learning even shows better performance than human beings. In medical domain, deep learning has become the top choice for researchers to analyze big data, especially medical imaging. This review briefly introduces the history and development of deep learning, and elaborates on the progress of research on deep learning in medical imaging by reviewing the latest and most influential research results. In addition, this paper briefly discusses application of deep learning in medical imaging analysis, as well as the future prospect and challenges of deep learning.
  • loading
  • [1] Hinton GE, Salakhutdinov RR. Reducing the dimensionality of data with neural networks[J]. Science, 2016, 313:504-507. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=4bf28668b4ac9aa4374f7393e37d2e9d
    [2] Lecun Y, Bengio Y, Hinton G. Deep learning[J]. Nature, 2015, 521:436-444. doi:  10.1038/nature14539
    [3] Krizhevsky A, Sutskever I, Hinton GE. ImageNet classifica-tion with deep convolutional neural networks[C]. Interna-tional Conference on Neural Information Processing Systems, 2012: 1097-1105.
    [4] Litjens G, Kooi T, Bejnordi BE, et al. A survey on deep learning in medical image analysis[J]. Med Image Anal, 2017, 42:60-88. doi:  10.1016/j.media.2017.07.005
    [5] van Grinsven MJ, van Ginneken B, Hoyng CB, et al. Fast convolutional neural network training using selective data sampling:application to hemorrhage detection in color fundus images[J]. IEEE Trans Med Imaging, 2016, 35:1273-1284. doi:  10.1109/TMI.2016.2526689
    [6] Lin Y, Goyal P, Girshick R, et al. Focal loss for dense ob-ject detection[C]. In ICCV, 2017.
    [7] Ronneberger O, Philipp F, Thomas B. U-net: Convolutional networks for biomedical image segmentation[C].International Conference on Medical Image Computing and Computer Assisted Intervention, 2015.
    [8] Özgün C, Abdulkadir A, Lienkamp SS, et al. 3D U-net: learning dense volumetric segmentation from sparse annotation[C]. International Conference on Medical Image Computing and Computer Assisted Intervention, 2016.
    [9] Hazlett HC, Gu H, Munsell BC, et al. Early brain development in infants at high risk for autism spectrum disorder[J]. Nature, 2017, 542:348-351. doi:  10.1038/nature21369
    [10] Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016316:2402-2410. doi:  10.1001/jama.2016.17216
    [11] Szegedy C, Vanhoucke V, Ioffe S, et al. Rethinking the inception architecture for computer vision[J]. Computer Science, 2015:2818-2826. doi:  10.1109/CVPR.2016.308
    [12] Christian S, Sergey I, Vincent V, et al. Inception-v4, inception-resnet and the impact of residual connections on learning[C]. AAAI, 2017.
    [13] Simonyan K, Zisserman A. Very deep convolutional networks for large-scale image recognition[J]. Computer Science, 2014, 1556:1409. https://arxiv.org/abs/1409.1556
    [14] Kooi T, Litjens G, van Ginneken B, et al. Large scale deep learning for computer aided detection of mammographic lesions[J]. Med Image Anal, 2017, 35:303-312. doi:  10.1016/j.media.2016.07.007
    [15] He K, Zhang X, Ren S, et al. Deep residual learning for image recognition[C]. Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 2016.
    [16] Lotter, William, Greg S, et al. A multi-scale CNN and curriculum learning strategy for mammogram classification[C]. Deep Learning in Medical Image Analysis and Multimodal Learning for Clinical Decision Support, 2017: 169-177.
    [17] Esteva A, Kuprel B, Novoa RA, et al. Dermatologist-level classification of skin cancer with deep neural networks[J]. Nature, 2017, 542:115. doi:  10.1038/nature21056
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (426) PDF downloads(1939) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return