ZHANG Gumuyang, XU Lili, MAO Li, LI Xiuli, JIN Zhengyu, SUN Hao. CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 698-704. DOI: 10.12290/xhyxzz.2021-0511
Citation: ZHANG Gumuyang, XU Lili, MAO Li, LI Xiuli, JIN Zhengyu, SUN Hao. CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 698-704. DOI: 10.12290/xhyxzz.2021-0511

CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study

Funds: 

National Natural Science Foundation of China 8190742

More Information
  • Corresponding author:

    SUN Hao  Tel: 86-10-69154597, E-mail: sunhao_robert@126.com

  • Received Date: June 30, 2021
  • Accepted Date: August 04, 2021
  • Issue Publish Date: September 29, 2021
  •   Objective  To investigate the feasibility of the CT-based radiomics model to predict the recurrence of bladder cancer in one year postoperatively.
      Methods  Patients with bladder cancer that received surgical treatment in Peking Union Medical College Hospital from May 2014 to July 2018 were retrospectively enrolled and followed up the recurrence of the disease. Nephrographic phase images of preoperative CT urography(CTU) performed in our hospital were collected. The images were filtered before radiomic feature extraction, and JMIM was used to identify the best radiomic features related to recurrence of bladder cancer. Random forest, AdaBoost, gradient boosting, and their combined model were used to build the model for predicting recurrence of bladder cancer after resection in one year. We applied 10-fold cross validation to validate each model and performed receiver operator characteristic curves to analyze the performance of each model.
      Results  A total of 228 cases were included in this study according to inclusion and exclusion criteria. Fifty-one patients had recurrence and the rest 177 patients had no recurrence in one year during postoperative follow-up. In the cross validation, the random forest model, AdaBoost model, gradient boosting model and combined model predicted the recurrence of bladder cancer with AUC of 0.729(95% CI: 0.649-0.809), 0.710(95% CI: 0.627-0.793), 0.709(95% CI: 0.624-0.793)and 0.732(95% CI: 0.651-0.812), accuracy of 76.8%(95% CI: 70.6%-82.0%), 73.7%(95% CI: 67.4%-79.2%), 61.8%(95% CI: 54.7%-67.7%)and 75.0%(95% CI: 68.8%-80.4%), sensitivity of 52.9%(95% CI: 38.6%-66.8%), 62.7%(95% CI: 48.1%-75.5%), 80.4%(95% CI: 64.3%-88.2%)and 58.8%(95% CI: 44.2%-72.1%), specificity of 83.6%(95% CI: 77.1%-88.6%), 76.8%(95% CI: 69.8%-82.7%), 56.5%(95% CI: 48.9%-63.9%)and 79.7%(95% CI: 72.8%-85.2%), respectively.
      Conclusion  Integration of CT-based radiomics prediction models can predict the recurrence risk of bladder cancer in one year postoperatively.
  • [1]
    Bray F, Ferlay J, Soerjomataram I, et al. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries[J]. CA Cancer J Clin, 2018, 68: 394-424. DOI: 10.3322/caac.21492
    [2]
    Pang C, Guan Y, Li H, et al. Urologic cancer in China[J]. JPN J Clin Oncol, 2016, 46: 497-501. DOI: 10.1093/jjco/hyw034
    [3]
    Lambin P, Rios-Velazquez E, Leijenaar R, et al. Radiomics: extracting more information from medical images using advanced feature analysis[J]. Eur J Cancer, 2012, 48: 441-446. DOI: 10.1016/j.ejca.2011.11.036
    [4]
    Kumar V, Gu Y, Basu S, et al. Radiomics: the process and the challenges[J]. Magnetic Resonance Imaging, 2012, 30: 1234-1248. DOI: 10.1016/j.mri.2012.06.010
    [5]
    Aerts HJ, Velazquez ER, Leijenaar RT, et al. Decoding tumour phenotype by noninvasive imaging using a quantita-tive radiomics approach[J]. Nat Commun, 2014, 5: 4006. DOI: 10.1038/ncomms5006
    [6]
    Gillies RJ, Kinahan PE, Hricak H. Radiomics: Images Are More than Pictures, They Are Data[J]. Radiology, 2016, 278: 563-577. DOI: 10.1148/radiol.2015151169
    [7]
    Spiess PE, Agarwal N, Bangs R, et al. Bladder Cancer, Version 5.2017, NCCN Clinical Practice Guidelines in Oncology[J]. J Natl Compr Canc Netw, 2017, 15: 1240-1267. DOI: 10.6004/jnccn.2017.0156
    [8]
    Kluth LA, Black PC, Bochner BH, et al. Prognostic and Prediction Tools in Bladder Cancer: A Comprehensive Review of the Literature[J]. Eur Urol, 2015, 68: 238-253. DOI: 10.1016/j.eururo.2015.01.032
    [9]
    Fernandez-Gomez J, Madero R, Solsona E, et al. Predicting nonmuscle invasive bladder cancer recurrence and progression in patients treated with bacillus Calmette-Guerin: the CUETO scoring model[J]. J Urol, 2009, 182: 2195-2203. DOI: 10.1016/j.juro.2009.07.016
    [10]
    Sylvester RJ, van der Meijden AP, Oosterlinck W, et al. Predicting recurrence and progression in individual patients with stage Ta T1 bladder cancer using EORTC risk tables: a combined analysis of 2596 patients from seven EORTC trials[J]. Eur Urol, 2006, 49: 466-475. DOI: 10.1016/j.eururo.2005.12.031
    [11]
    Oderda M, Ricceri F, Pisano F, et al. Prognostic factors including Ki-67 and p53 in Bacillus Calmette-Guerin-treated non-muscle-invasive bladder cancer: a prospective study[J]. Urol Int, 2013, 90: 184-190. DOI: 10.1159/000343431
    [12]
    van Kessel KEM, van der Keur KA, Dyrskjøt L, et al. Molecular Markers Increase Precision of the European Associa-tion of Urology Non-Muscle-Invasive Bladder Cancer Progression Risk Groups[J]. Clin Cancer Res, 2018, 24: 1586-1593. DOI: 10.1158/1078-0432.CCR-17-2719
    [13]
    Tilki D, Burger M, Dalbagni G, et al. Urine markers for detection and surveillance of non-muscle-invasive bladder cancer[J]. Euro Urol, 2011, 60: 484-492. DOI: 10.1016/j.eururo.2011.05.053
    [14]
    Ueno Y, Takeuchi M, Tamada T, et al. Diagnostic Accuracy and Interobserver Agreement for the Vesical Imaging-Reporting and Data System for Muscle-invasive Bladder Cancer: A Multireader Validation Study[J]. Eur Urol, 2019, 76: 54-56. DOI: 10.1016/j.eururo.2019.03.012
    [15]
    Wu S, Zheng J, Li Y, et al. A Radiomics Nomogram for the Preoperative Prediction of Lymph Node Metastasis in Bladder Cancer[J]. Clin Cancer Res, 2017, 23: 6904-6911. DOI: 10.1158/1078-0432.CCR-17-1510
    [16]
    Zhang G, Xu L, Zhao L, et al. CT-based radiomics to predict the pathological grade of bladder cancer[J]. Eur Radiol, 2020, 30: 6749-6756. DOI: 10.1007/s00330-020-06893-8
    [17]
    Zhang G, Sun H, Shi B, et al. Quantitative CT texture analysis for evaluating histologic grade of urothelial carcinoma[J]. Abdom Radiol (NY), 2017, 42: 561-568. DOI: 10.1007/s00261-016-0897-2
    [18]
    Garapati SS, Hadjiiski L, Cha KH, et al. Urinary bladder cancer staging in CT urography using machine learning[J]. Med Phys, 2017, 44: 5814-5823. DOI: 10.1002/mp.12510
  • Related Articles

    [1]LIU Shupeng, YU Mengyang, WU Xiaofei, WANG Hongyun. Clinical Landscape of Therapeutic Cancer Vaccines: Challenges and Opportunities[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1356-1363. DOI: 10.12290/xhyxzz.2024-0130
    [2]WEN Xuejun, ZHOU Wuhao, GUO Zhide, ZHANG Xianzhong. Integrin αvβ3 Targeted Radiopharmaceutical 99mTc-RGD Combined with Anti-PD-L1 mAb to Enhance the Anti-tumor Effect in Tumor Immunotherapy[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 766-773. DOI: 10.12290/xhyxzz.2023-0155
    [3]LI Tao, ZHANG Kan, YANG Wenyu, LIU Lu, ZHENG Xuan, ZHANG Fan, HU Yi. Clinical Application of Immune Checkpoint Inhibitors CTLA-4 in Solid Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 652-659. DOI: 10.12290/xhyxzz.2022-0617
    [4]WANG Shuo, DENG Yuntian, PENG Huan, ZHANG Xiangfeng. Progress in the Treatment of Non-small Cell Lung Cancer with Immune Checkpoint Inhibitors[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 409-415. DOI: 10.12290/xhyxzz.2022-0151
    [5]LI Linrong, LI Yan, SUN Qiang. Clinical Trials and Current Progress in the Treatment of Triple-negative Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 177-183. DOI: 10.12290/xhyxzz.2022-0085
    [6]LUO Xiangchong, WANG Zhouqing, LI Qiongyan, MAO Guibing, AN Le, ZHU Jiahong, TAO E'hong, SUN Lifei, WANG Shengfei, LI Gaofeng. Pharmacological Effects and Clinical Evaluation of PD-1 Inhibitor of Tislelizumab in the Treatment of Advanced Malignant Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 679-686. DOI: 10.12290/xhyxzz.2021-0691
    [7]LUO Yanwen, ZHU Qingli. Application of Radiomics in Breast Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 983-988. DOI: 10.12290/xhyxzz.2021-0011
    [8]HUA Yuwei, ZHAO Lin. Diagnosis and Management of Immunotherapy-related Liver Toxicity[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 798-806. DOI: 10.12290/xhyxzz.2021-0138
    [9]Mei GUAN, Chun-mei BAI. Medical Treatment for Biliary Tract Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 325-333. DOI: 10.3969/j.issn.1674-9081.20190247
    [10]Han-zhong LI, Yu-shi ZHANG, Guo-yang ZHENG. Commentary on and Expectation of Tumor Immunotherapy[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 289-294. DOI: 10.3969/j.issn.1674-9081.2018.04.001
  • Cited by

    Periodical cited type(5)

    1. 姚晓倩,洪敏萍,蔡宏杰,吴慧青. 基于超声影像组学术前预测浸润性乳腺癌患者腋窝淋巴结状态. 现代实用医学. 2023(01): 116-119 .
    2. 林文华,杨少玲,赫兰,陶均佳,张红珍,顾家红,赵坤,胡静. 基于术前超声及钼靶特征的列线图预测乳腺癌腋窝淋巴结转移的价值. 中国临床医学影像杂志. 2023(09): 647-653 .
    3. 牛梓涵,朱庆莉,姜玉新. 超声在早期乳腺癌腋窝淋巴结转移诊断中的应用进展. 中华超声影像学杂志. 2023(10): 889-893 .
    4. 李玥,曹军英. 多模态超声在乳腺癌精准诊断中研究进展. 临床军医杂志. 2022(07): 661-665 .
    5. 赵萍,闫朝岐,杨学伟,李洋,叶倩. 乳腺癌腋窝淋巴结超声检查评价及研究进展. 中国临床研究. 2022(09): 1270-1272+1291 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views PDF downloads Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close