SU Baiyan, QI Yafei, GUAN Hui, HE Yonglan, XUE Huadan, JIN Zhengyu. Texture Analysis of Sequential Images of T2-weighted Imaging and Diffusion-weighted Imaging for Predicting the Efficacy of Chemoradiotherapy in Cervical Squamous Cell Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 713-720. DOI: 10.12290/xhyxzz.2021-0380
Citation: SU Baiyan, QI Yafei, GUAN Hui, HE Yonglan, XUE Huadan, JIN Zhengyu. Texture Analysis of Sequential Images of T2-weighted Imaging and Diffusion-weighted Imaging for Predicting the Efficacy of Chemoradiotherapy in Cervical Squamous Cell Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 713-720. DOI: 10.12290/xhyxzz.2021-0380

Texture Analysis of Sequential Images of T2-weighted Imaging and Diffusion-weighted Imaging for Predicting the Efficacy of Chemoradiotherapy in Cervical Squamous Cell Carcinoma

Funds: 

Basic Research Operating Expenses of the Central Public Welfare Scientific Research Institute of Chinese Academy of Medical Sciences 2020-RW320-005

More Information
  • Corresponding author:

    HE Yonglan  Tel: 86-10-69159610, E-mail: heyonglan@pumch.cn

  • Received Date: May 09, 2021
  • Accepted Date: July 29, 2021
  • Issue Publish Date: September 29, 2021
  •   Objective  To investigate the correlation of the texture parameters of T2-weighted imaging (T2WI) and diffusion-weighted imaging (DWI) with the efficacy of chemoradiotherapy in cervical squamous cell carcinoma.
      Methods  Patients with squamous cell carcinoma of the cervix that underwent chemoradiotherapy from February 2015 to January 2016 in Peking Union Medical College Hospital were included retrospectively, and were divided into the disease-progressive group and the disease-stable group according to their prognosis. Texture analysis of baseline T2WI and DWI images before chemoradiotherapy was carried out with Texrad software, and the texture parameters of spatial scale filter (SSF) with radius values of 2, 4 and 6 were obtained. The differences of texture parameters between the two groups were compared, and the correlation between the texture parameters and the curative of chemoradiotherapy in patients with cervical squamous cell carcinoma was analyzed by multivariate Cox regression. Receiver operating characteristic (ROC) curve was used to analyze the performance of texture parameters in predicting disease progression after chemoradiotherapy in patients with cervical squamous cell carcinoma.
      Results  A total of 121 patients with squamous cell carcinoma of the cervix that met the inclusion and exclusion criteria were enrolled in this study. There were 46 cases in the disease-progressive group and 75 cases in the disease-stable group. In T2WI sequential images, there were significant differences in the texture parameters of means (SSF2, SSF4, SSF6), skewness (SSF2, SSF4), and entropy (SSF4, SSF6) between disease-progressive group and disease-stable group (all P < 0.05). In DWI sequential images, there were significant differences in the texture parameters of means (SSF2, SSF4, SSF6), skewness (SSF4, SSF6), and kurtosis (SSF2, SSF4) between the two groups (all P < 0.05). Multivariate Cox regression analysis showed that the texture parameter of means (SSF2, SSF4, SSF6) of T2WI and the texture parameters of means (SSF2, SSF6), entropy (SSF2, SSF4, SSF6) and skewness (SSF4, SSF6) of DWI were correlated with the efficacy of chemoradiotherapy in patients with cervical squamous cell carcinoma (P < 0.05). The Results of ROC analysis showed that the texture parameter of means (T2WI-SSF2, T2WI-SSF4, T2WI-SSF6, DWI-SSF2, DWI-SSF6) and skewness (DWI-SSF6) could predict the progression of cervical squamous cell carcinoma after chemoradiotherapy in patients with cervical squamous cell carcinoma. The area under the curve (AUC) was 0.625-0.746. Among them, the mean of T2WI-SSF4 was the most effective (AUC: 0.746), followed by the mean of T2WI-SSF2 (AUC: 0.725) and the mean of T2WI-SSF6 (AUC: 0.703).
      Conclusions  The texture parameters of baseline T2WI and DWI sequences were correlated with the curative effect of chemoradiotherapy in patients with cervical squamous cell carcinoma. The parameters of means and skewness can predict the progression of cervical squamous carcinoma after chemoradiotherapy, and the mean has a higher predictive power.
  • [1]
    Torre LA, Siegel RL, Ward EM, et al. Global cancer incidence and mortality rates and trends--An update[J]. Cancer Epidemiol Biomarkers Prev, 2016, 25: 16-27. DOI: 10.1158/1055-9965.EPI-15-0578
    [2]
    Jr WS, Bacon MA, Bajaj A, et al. Cervical cancer: A global health crisis[J]. Cancer, 2017, 123: 2404-2412. DOI: 10.1002/cncr.30667
    [3]
    Jonska-Gmyrek J, Gmyrek L, Zolciak-Siwinska A, et al. Adenocarcinoma histology is a poor prognostic factor in locally advanced cervical cancer[J]. Curr Med Res Opin, 2019, 35: 595-601. DOI: 10.1080/03007995.2018.1502166
    [4]
    Davnall F, Yip CS, Ljungqvist G, et al. Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?[J]. Insights Imaging, 2012, 3: 573-589. DOI: 10.1007/s13244-012-0196-6
    [5]
    Ng F, Ganeshan B, Kozarski R, et al. Assessment of primary colorectal cancer heterogeneity by using whole-tumor texture analysis: contrast-enhanced CT texture as a biomarker of 5-year survival[J]. Radiology, 2013, 266: 177-184. DOI: 10.1148/radiol.12120254
    [6]
    Kim JH, Ko ES, Lim Y, et al. Breast cancer hetero-geneity: MR imaging texture analysis and survival outcomes[J]. Radiology, 2017, 282: 665-675. DOI: 10.1148/radiol.2016160261
    [7]
    Zhang S, Chiang GC, Magge RS, et al. Texture analysis on conventional MRI images accurately predicts early malignant transformation of low-grade gliomas[J]. Eur Radiol, 2019, 29: 2751-2759. DOI: 10.1007/s00330-018-5921-1
    [8]
    Ditmer A, Zhang B, Shujaat T, et al. Diagnostic accuracy of MRI texture analysis for grading gliomas[J]. J Neurooncol, 2018, 140: 583-589. DOI: 10.1007/s11060-018-2984-4
    [9]
    张铮铮, 刘筱, 徐浩, 等. MRI图像纹理特征在评估宫颈癌新辅助化疗中的预测作用[J]. 徐州医科大学学报, 2018, 38: 592-595. DOI: 10.3969/j.issn.1000-2065.2018.09.009

    Zhang ZZ, Liu X, Xu H, et al. Application of MRI texture analysis in evaluating the neoadjuvant chemotherapy response in uterine cervix carcinoma[J]. Xuzhou Yike Daxue Xuebao, 2018, 38: 592-595. DOI: 10.3969/j.issn.1000-2065.2018.09.009
    [10]
    郑明雪, 董江宁, 李翠平, 等. 表观扩散系数联合纹理特征评估宫颈鳞癌分化程度的价值[J]. 实用放射学杂志, 2020, 36: 592-595, 614. DOI: 10.3969/j.issn.1002-1671.2020.04.021

    Zheng MX, Dong JN, Li CP, et al. The value of ADC values and texture analysis in evaluating the differentiation degree of cervical squamous cell carcinoma[J]. Shiyong Fangshexue Zazhi, 2020, 36: 592-595, 614. DOI: 10.3969/j.issn.1002-1671.2020.04.021
    [11]
    陈文林, 胥明婧, 李绍东. 磁共振扩散加权成像纹理分析在对宫颈癌术后早期复发的预测价值[J]. 广西医学, 2018, 40: 1440-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-GYYX201813016.htm

    Chen WL, Xu MJ, Li SD. Predictive value of texture analysis based on MRI diffusion-weighted imaging for early recurrence of cervical cancer after surgery[J]. Guangxi Yixue, 2018, 40: 1440-1443. https://www.cnki.com.cn/Article/CJFDTOTAL-GYYX201813016.htm
    [12]
    谢元亮, 杜丹, 谢伟, 等. DCE-MRI纹理分析鉴别宫颈鳞癌与腺癌及预测分级的价值[J]. 放射学实践, 2019, 34: 835-840. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201908002.htm

    Xie YL, Du D, Xie W, et al. The value of texture analysis based on dynamic contrast-enhanced MRI for differentiating cervical adeno-carcinoma from squamous cell carcinoma and its prediction of stages[J]. Fangshexue Shijian, 2019, 34: 835-840. https://www.cnki.com.cn/Article/CJFDTOTAL-FSXS201908002.htm
    [13]
    杜文壮, 蒲如剑, 梁洁, 等. DCE-MRI纹理分析鉴别AFP阴性肝细胞肝癌与肝局灶性结节增生的价值[J]. 磁共振成像, 2020, 11: 765-770. DOI: 10.12015/issn.1674-8034.2020.09.009

    Du WZ, Pu RJ, Liang J, et al. The value of texture analysis of dynamic contrast-enhanced MRI in differentiating AFP negative hepatocellular carcinoma from focal nodular hyperplasia[J]. Cigongzhen Chengxiang, 2020, 11: 765-770. DOI: 10.12015/issn.1674-8034.2020.09.009
    [14]
    李梦双, 刘耀赛, 董丽娜, 等. MRI纹理分析在Ⅱ级和Ⅲ级脑胶质瘤鉴别诊断中的应用价值研究[J]. 浙江医学, 2020, 42: 580-582. DOI: 10.12056/j.issn.1006-2785.2020.42.6.2019-3525

    Li MS, Liu YS, Dong LN, et al. Value of MRI texture analysis in differential diagnosis of grade Ⅱ and grade Ⅲ gliomas[J]. Zhejiang Yixue, 2020, 42: 580-582. DOI: 10.12056/j.issn.1006-2785.2020.42.6.2019-3525
    [15]
    郑茜, 鲁毅, 孙学进, 等. 常规磁共振成像纹理分析对良、恶性脑膜瘤鉴别诊断价值[J]. 实用放射学杂志, 2020, 36: 1192-1195. DOI: 10.3969/j.issn.1002-1671.2020.08.004

    Zheng Q, Lu Y, Sun XJ, et al. The value of conventional MRI texture analysis in differential diagnosis of benign and malignant meningiomas[J]. Shiyong Fangshexue Zazhi, 2020, 36: 1192-1195. DOI: 10.3969/j.issn.1002-1671.2020.08.004
    [16]
    翁炜, 吕秀玲, 张倩倩, 等. 基于磁共振影像组学技术对肝癌经肝动脉化疗栓塞术后短期疗效的预后价值分析[J]. 中华医学杂志, 2020, 100: 828-832. DOI: 10.3760/cma.j.cn112137-20190705-01502

    Weng W, Lyu XL, ZHANG QQ, et al. Prediction of short-term prognosis of hepatocellular carcinoma after TACE surgery based on MRI texture analysis technology[J]. Zhonghua Yixue Zazhi, 2020, 100: 828-832. DOI: 10.3760/cma.j.cn112137-20190705-01502
    [17]
    薛珂, 丁莹莹, 李振辉, 等. 利用磁共振成像动态增强纹理特征预测不同分子亚型乳腺癌[J]. 实用放射学杂志, 2020, 36: 1235-1239. DOI: 10.3969/j.issn.1002-1671.2020.08.015

    Xue K, Ding YY, Li ZH, et al. Dynamic contrast-enhanced MRI texture analysis for distinguishing different molecular subtypes of breast cancer[J]. Shiyong Fangshexue Zazhi, 2020, 36: 1235-1239. DOI: 10.3969/j.issn.1002-1671.2020.08.015
    [18]
    Ganeshan B, Miles KA, Young RC, et al. Hepatic enhancement in colorectal cancer: texture analysis correlates with hepatic hemodynamics and patient survival[J]. Acad Radiol, 2007, 14: 1520-1530. DOI: 10.1016/j.acra.2007.06.028
    [19]
    Chen J, Wang HY, Ye HY. Research progress of texture analysis in tumor imaging[J]. Chin J Radiol, 2017, 51: 979-982.
    [20]
    Teruel JR, Heldahl MG, Goa PE, et al. Dynamic contrast-enhanced MRI texture analysis for pretreatment prediction of clinical and pathological response to neoadjuvant chemo-therapy in patients with locally advanced breast cancer[J]. NMR Biomed, 2014, 27: 887-896. DOI: 10.1002/nbm.3132
    [21]
    Pyka T, Bundschuh RA, Andratschke N, et al. Textural features in pre-treatment[F18 ]-FDG-PET/CT are correlated with risk of local recurrence and disease-specific survival in early stage NSCLC patients receiving primary stereotactic radiation therapy[J]. Radiat Oncol, 2015, 10: 100. DOI: 10.1186/s13014-015-0407-7
    [22]
    Ganeshan B, Miles KA. Quantifying tumour heterogeneity with CT[J]. Cancer Imaging, 2013, 13: 140-149. DOI: 10.1102/1470-7330.2013.0015
    [23]
    王俊, 孙阳, 张燕燕, 等. CT纹理分析鉴别诊断胰腺导管腺癌、胰腺神经内分泌肿瘤及实性假乳头状肿瘤[J]. 中国医学影像技术, 2020, 36: 554-558. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202004019.htm

    Wang J, Sun Y, Zhang YY, et al. CT texture analysis in differential diagnosis of pancreatic ductal adenocarcinoma, pancreatic neuroendocrine tumor and solid pseudopapillary tumor[J]. Zhongguo Yixue Yingxiang Jishu, 2020, 36: 554-558. https://www.cnki.com.cn/Article/CJFDTOTAL-ZYXX202004019.htm
    [24]
    Kyriazi S, Collins DJ, Messiou C, et al. Metastatic ovarian and primary peritoneal cancer: assessing chemotherapy response with diffusion-weighted MR imaging-value of histogram analysis of apparent diffusion coefficients[J]. Radiology, 2011, 261: 182-192. DOI: 10.1148/radiol.11110577
    [25]
    Bezy-Wendling J, Kretowski M, Rolland Y, et al. Toward a better understanding of texture in vascular CT scan simulated images[J]. IEEE Trans Biomed Eng, 2001, 48: 120-124. DOI: 10.1109/10.900272
  • Related Articles

    [1]ZHAO Zeqing, PAN Hui, ZHANG Li, WANG Fengdan, CHEN Shi, YANG Xiao, LI Jianchu. Research Status and Application Prospect of Bone Age Assessment by Ultrasonography[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 400-405. DOI: 10.12290/xhyxzz.2023-0270
    [2]LIU Chang, ZHENG Yuchao, XIE Wenqian, LI Chen, LI Xiaohan. Image Recognition Method of Cervical Adenocarcinoma in Situ Based on Deep Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 159-167. DOI: 10.12290/xhyxzz.2022-0109
    [3]ZHAO Chen-yang, ZHU Qing-li, ZHANG Rui, QI Zhen-hong, YANG Meng, JIANG Yu-xin. The Potential Value of Photoacoustic Imaging in the Assessment of Inflammatory Changes of Joints[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 232-237. DOI: 10.12290/xhyxzz.20190139
    [4]Zhi-qun XING, Xiao-ting WANG, Da-wei LIU. Critical Ultrasonography: Hemodynamic Helper[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(5): 461-464. DOI: 10.3969/j.issn.1674-9081.2019.05.007
    [5]Rui-feng LIU, Yu XIA, Yu-xin JIANG. Application of Artificial Intelligence in Ultrasound Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 453-457. DOI: 10.3969/j.issn.1674-9081.2018.05.015
    [6]Jia-yu MAO, Xiao-ting WANG, Da-wei LIU. Importance of Critical Ultrasonography to Comprehensive Etiologic Management in Critical Care Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 404-406. DOI: 10.3969/j.issn.1674-9081.2018.05.005
    [7]Hang-ning ZHOU, Feng-ying XIE, Zhi-guo JIANG, Jie LIU, Hong-zhong JIN, Ru-song MENG, Yong CUI. Classification of Skin Images Based on Deep Learning[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 15-18. DOI: 10.3969/j.issn.1674-9081.2018.01.004
    [8]Li-ming XIA, Jian SHEN, Rong-guo ZHANG, Shao-kang WANG, Kuan CHEN. Application of Deep Learning in Medical Imaging Research[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 10-14. DOI: 10.3969/j.issn.1674-9081.2018.01.003
    [9]Fang YAO, Ai-ming YANG, Dong-sheng WU, Xi WU, Tao GUO, Wei-xun ZHOU, Xing-hua LU. Diagnostic Value of Miniprobe Endoscopic Ultrasonography in Assessment of Tumor Invasion Depth in Early Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2015, 6(2): 83-88. DOI: 10.3969/j.issn.1674-9081.2015.02.002
    [10]Introduction to Vascular Ultrasonography (6th ed.)(2012)[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(1): 87-87.
  • Cited by

    Periodical cited type(5)

    1. 姚晓倩,洪敏萍,蔡宏杰,吴慧青. 基于超声影像组学术前预测浸润性乳腺癌患者腋窝淋巴结状态. 现代实用医学. 2023(01): 116-119 .
    2. 林文华,杨少玲,赫兰,陶均佳,张红珍,顾家红,赵坤,胡静. 基于术前超声及钼靶特征的列线图预测乳腺癌腋窝淋巴结转移的价值. 中国临床医学影像杂志. 2023(09): 647-653 .
    3. 牛梓涵,朱庆莉,姜玉新. 超声在早期乳腺癌腋窝淋巴结转移诊断中的应用进展. 中华超声影像学杂志. 2023(10): 889-893 .
    4. 李玥,曹军英. 多模态超声在乳腺癌精准诊断中研究进展. 临床军医杂志. 2022(07): 661-665 .
    5. 赵萍,闫朝岐,杨学伟,李洋,叶倩. 乳腺癌腋窝淋巴结超声检查评价及研究进展. 中国临床研究. 2022(09): 1270-1272+1291 .

    Other cited types(5)

Catalog

    Article Metrics

    Article views (777) PDF downloads (51) Cited by(10)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close