Citation: | ZHAO Qin, ZHANG Jinjin, CHEN Lili, XING Yanchao. Research Progress of PDGF Promoting Wound Repair[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1289-1295. DOI: 10.12290/xhyxzz.2023-0223 |
[1] |
Tang X, Hao M, Chang C, et al. Wound Healing Driver Gene and Therapeutic Development: Political and Scientific Hurdles[J]. Adv Wound Care (New Rochelle), 2021, 10: 415-435. DOI: 10.1089/wound.2019.1143
|
[2] |
Oliveira A, Simões S, Ascenso A, et al. Therapeutic advances in wound healing[J]. J Dermatolog Treat, 2022, 33: 2-22. DOI: 10.1080/09546634.2020.1730296
|
[3] |
Rahman MM, Garcia N, Loh YS, et al. A platelet-derived hydrogel improves neovascularisation in full thickness wounds[J]. Acta Biomater, 2021, 136: 199-209. DOI: 10.1016/j.actbio.2021.09.043
|
[4] |
Wilkinson HN, Hardman MJ. Wound healing: cellular mechanisms and pathological outcomes[J]. Open Biol, 2020, 10: 200223. DOI: 10.1098/rsob.200223
|
[5] |
Yao L, Rathnakar BH, Kwon HR, et al. Temporal control of PDGFRα regulates the fibroblast-to-myofibroblast transition in wound healing[J]. Cell Rep, 2022, 40: 111192. DOI: 10.1016/j.celrep.2022.111192
|
[6] |
Fernández-Simón E, Suárez-Calvet X, Carrasco-Rozas A, et al. RhoA/ROCK2 signalling is enhanced by PDGF-AA in fibro-adipogenic progenitor cells: implications for Duchenne muscular dystrophy[J]. J Cachexia Sarcopenia Muscle, 2022, 13: 1373-1384. DOI: 10.1002/jcsm.12923
|
[7] |
Contreras O, Córdova-Casanova A, Brandan E. PDGF-PDGFR network differentially regulates the fate, migration, proliferation, and cell cycle progression of myogenic cells[J]. Cell Signal, 2021, 84: 110036. DOI: 10.1016/j.cellsig.2021.110036
|
[8] |
Su W, Liu G, Liu X, et al. Angiogenesis stimulated by elevated PDGF-BB in subchondral bone contributes to osteoarthritis development[J]. JCI Insight, 2020, 5: e135446. DOI: 10.1172/jci.insight.135446
|
[9] |
Shang Y, Liu H, Peng R, et al. PDGF-mimicking supramolecular nanofibers for ionizing radiation-induced injury repair[J]. Chem Eng J, 2021, 410: 128309. DOI: 10.1016/j.cej.2020.128309
|
[10] |
Chen Y, Jiang L, Lyu K, et al. A Promising Candidate in Tendon Healing Events-PDGF-BB[J]. Biomolecules, 2022, 12: 1518. DOI: 10.3390/biom12101518
|
[11] |
Jian K, Yang C, Li T, et al. PDGF-BB-derived supramolecular hydrogel for promoting skin wound healing[J]. J Nanobiotechnol, 2022, 20: 201. DOI: 10.1186/s12951-022-01390-0
|
[12] |
曾淑红, 易成刚. 血小板浓缩提取物促进组织修复的研究进展[J]. 中国美容整形外科杂志, 2021, 32: 768-771. https://www.cnki.com.cn/Article/CJFDTOTAL-SMZW202112021.htm
|
[13] |
Mochizuki M, Güç E, Park AJ, et al. Growth factors with enhanced syndecan binding generate tonic signalling and promote tissue healing[J]. Nat Biomed Eng, 2020, 4: 463-475.
|
[14] |
Assoian RK, Grotendorst GR, Miller DM, et al. Cellular transformation by coordinated action of three peptide growth factors from human platelets[J]. Nature, 1984, 309: 804-806. DOI: 10.1038/309804a0
|
[15] |
Shirbhate U, Bajaj P. Third-Generation Platelet Concent-rates in Periodontal Regeneration: Gaining Ground in the Field of Regeneration[J]. Cureus, 2022, 14: e28072.
|
[16] |
Heililahong H, Jin P, Lei H, et al. Whole transcriptome analysis of platelet concentrates during storage[J]. Blood Transfus, 2023, 21: 146-156.
|
[17] |
Shashank B, Bhushan M. Injectable Platelet-Rich Fibrin (PRF): The newest biomaterial and its use in various dermatological conditions in our practice: A case series[J]. J Cosmet Dermatol, 2021, 20: 1421-1426. DOI: 10.1111/jocd.13742
|
[18] |
Choukroun J, Adda F, Schoeffler C, et al. Une opportunite' en paro-implantologie: le PRF[J]. Implantodontie, 2001, 42: 55-62.
|
[19] |
Tunali M, Özdemir H, Küçükodaci Z, et al. A novel platelet concentrate: titanium-prepared platelet-rich fibrin[J]. Biomed Res Int, 2014, 2014: 209548.
|
[20] |
Corigliano M, Sacco L, Baldoni E. CGF-una proposta terapeutica per la medicina rigenerativa[J]. Odontoiatria, 2010, 1: 69-81.
|
[21] |
Rodella LF, Favero G, Boninsegna R, et al. Growth factors, CD34 positive cells, and fibrin network analysis in concentrated growth factors fraction[J]. Microsc Res Tech, 2011, 74: 772-777. DOI: 10.1002/jemt.20968
|
[22] |
Cecerska-Heryć E, Goszka M, Serwin N, et al. Applications of the regenerative capacity of platelets in modern medicine[J]. Cytokine Growth Factor Rev, 2022, 64: 84-94. DOI: 10.1016/j.cytogfr.2021.11.003
|
[23] |
He M, Guo X, Li T, et al. Comparison of Allogeneic Platelet-rich Plasma With Autologous Platelet-rich Plasma for the Treatment of Diabetic Lower Extremity Ulcers[J]. Cell Transplant, 2020, 29: 963689720931428.
|
[24] |
Zhao Q, Ma Y, Lu Y, et al. Successful Treatment of Chronic Lower Extremity Ulcers with Allogeneic Platelet-Rich Plasma and Artificial Dermis: A Case Report[J]. Adv Skin Wound Care, 2019, 32: 550-552. DOI: 10.1097/01.ASW.0000604176.47082.60
|
[25] |
Burnouf T, Goubran HA. Regenerative effect of expired platelet concentrates in human therapy: An update[J]. Transfus Apher Sci, 2022, 61: 103363. DOI: 10.1016/j.transci.2022.103363
|
[26] |
Daikuara LY, Yue Z, Skropeta D, et al. In vitro characterisation of 3D printed platelet lysate-based bioink for potential application in skin tissue engineering[J]. Acta Biomater, 2021, 123: 286-297. DOI: 10.1016/j.actbio.2021.01.021
|
[27] |
Guo X, Liu C, Zhang Y, et al. Effect of super activated platelet lysate on cell proliferation, repair and osteogenesis[J]. Biomed Mater Eng, 2023, 34: 95-109.
|
[28] |
D'amico R, Malucelli C, Uccelli A, et al. Therapeutic arteriogenesis by factor-decorated fibrin matrices promotes wound healing in diabetic mice[J]. J Tissue Eng, 2022, 13: 20417314221119615.
|
[29] |
Banerjee A, Koul V, Bhattacharyya J. Fabrication of In Situ Layered Hydrogel Scaffold for the Co-delivery of PGDF-BB/Chlorhexidine to Regulate Proinflammatory Cytokines, Growth Factors, and MMP-9 in a Diabetic Skin Defect Albino Rat Model[J]. Biomacromolecules, 2021, 22: 1885-1900. DOI: 10.1021/acs.biomac.0c01709
|
[30] |
Park TY, Maeng SW, Jeon EY, et al. Adhesive protein-based angiogenesis-mimicking spatiotemporal sequential release of angiogenic factors for functional regenerative medicine[J]. Biomaterials, 2021, 272: 120774. DOI: 10.1016/j.biomaterials.2021.120774
|
[31] |
Lee CH, Liu KS, Cheng CW, et al. Codelivery of Sustain-able Antimicrobial Agents and Platelet-Derived Growth Factor via Biodegradable Nanofibers for Repair of Diabetic Infectious Wounds[J]. ACS Infect Dis, 2020, 6: 2688-2697. DOI: 10.1021/acsinfecdis.0c00321
|
[32] |
Ahmad T, Mcgrath S, Sirafim C, et al. Development of wound healing scaffolds with precisely-triggered sequential release of therapeutic nanoparticles[J]. Biomater Sci, 2021, 9: 4278-4288. DOI: 10.1039/D0BM01277G
|
[33] |
Joshi A, Kaur T, Joshi A, et al. Light-Mediated 3D Printing of Micro-Pyramid-Decorated Tailorable Wound Dressings with Endogenous Growth Factor Sequestration for Improved Wound Healing[J]. ACS Appl Mater Interfaces, 2023, 15: 327-337. DOI: 10.1021/acsami.2c16418
|
[34] |
Wang P, Berry D, Moran A, et al. Controlled Growth Factor Release in 3D-Printed Hydrogels[J]. Adv Healthc Mater, 2020, 9: e1900977. DOI: 10.1002/adhm.201900977
|
[35] |
Rousselle P, Braye F, Dayan G. Re-epithelialization of adult skin wounds: Cellular mechanisms and therapeutic strategies[J]. Adv Drug Deliv Rev, 2019, 146: 344-365. DOI: 10.1016/j.addr.2018.06.019
|
[36] |
White MJV, Briquez PS, White DAV, et al. VEGF-A, PDGF-BB and HB-EGF engineered for promiscuous super affinity to the extracellular matrix improve wound healing in a model of type 1 diabetes[J]. NPJ Regen Med, 2021, 6: 76. DOI: 10.1038/s41536-021-00189-1
|
[37] |
Shim A, Liu H, Focia PJ, et al. Structures of a platelet-derived growth factor/propeptide complex and a platelet-derived growth factor/receptor complex[J]. Proc Natl Acad Sci U S A, 2010, 107: 11307-11312. DOI: 10.1073/pnas.1000806107
|
[38] |
Perez JJ. Designing Peptidomimetics[J]. Curr Top Med Chem, 2018, 18: 566-590. DOI: 10.2174/1568026618666180522075258
|
[39] |
Kumar S, Henning-Knechtel A, Magzoub M, et al. Peptidomimetic-Based Multidomain Targeting Offers Critical Evaluation of Aβ Structure and Toxic Function[J]. J Am Chem Soc, 2018, 140: 6562-6574. DOI: 10.1021/jacs.7b13401
|
[40] |
Deptuła M, Karpowicz P, Wardowska A, et al. Development of a Peptide Derived from Platelet-Derived Growth Factor (PDGF-BB) into a Potential Drug Candidate for the Treatment of Wounds[J]. Adv Wound Care (New Rochelle), 2020, 9: 657-675. DOI: 10.1089/wound.2019.1051
|
[41] |
Paramasivam T, Maiti SK, Palakkara S, et al. Effect of PDGF-B Gene-Activated Acellular Matrix and Mesenchymal Stem Cell Transplantation on Full Thickness Skin Burn Wound in Rat Model[J]. Tissue Eng Regen Med, 2021, 18: 235-251. DOI: 10.1007/s13770-020-00302-3
|
[42] |
Thapa RK, Margolis DJ, Kiick KL, et al. Enhanced wound healing via collagen-turnover-driven transfer of PDGF-BB gene in a murine wound model[J]. ACS Appl Bio Mater, 2020, 3: 3500-3517. DOI: 10.1021/acsabm.9b01147
|
[43] |
Hu WW, Lin YT. Alginate/polycaprolactone composite fibers as multifunctional wound dressings[J]. Carbohydr Polym, 2022, 289: 119440. DOI: 10.1016/j.carbpol.2022.119440
|
[44] |
Shi R, Lian W, Han S, et al. Nanosphere-mediated co-delivery of VEGF-A and PDGF-B genes for accelerating diabetic foot ulcers healing in rats[J]. Gene Ther, 2018, 25: 425-438. DOI: 10.1038/s41434-018-0027-6
|
[1] | ZHAO Qin, WANG Haiying, WANG Hui, ZHANG Jinjin, XING Yanchao. Plateau Refractory Wounds Treated with Platelet Lysate Gel: A Case Report[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1408-1412. DOI: 10.12290/xhyxzz.2024-0195 |
[2] | WANG Caihong, LIU Rongxin, TANG Feng, WEI Xiaotao, XU Ziqing, HOU Huaijing, ZHANG Jie, ZHAO Yongqiang, XUE Jianjun. Research Progress on the Role of NLRP3 Inflammasome and Microglia in Cognitive Impairment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1282-1288. DOI: 10.12290/xhyxzz.2023-0217 |
[3] | WU Liyi, YAN Weigang. Research Progress of Prostate Cancer Somatic Mutation and Treatment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 839-843. DOI: 10.12290/xhyxzz.2022-0717 |
[4] | ZHANG Siyu, MA Shiqi, WANG Mengci, LI Xiaoyi, FENG Shumei. Research Progress of Skin Tissue Engineering Scaffolds and Their Materials in Wound Repair[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 603-610. DOI: 10.12290/xhyxzz.2022-0648 |
[5] | JIAO Yiping, WANG Xiangxue, XU Jun. Advances and Challenges in Applied Computational Pathology[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 535-541. DOI: 10.12290/xhyxzz.2022-0287 |
[6] | YANG Jingyi, XU Qianyue, YU Hong. Research Progress on Pathogenesis and Treatment of Juvenile Localized Scleroderma[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 110-116. DOI: 10.12290/xhyxzz.2021-0178 |
[7] | Ren-zhi WANG, Ming FENG, Yang-hua FAN. Improve the Database of Pituitary Diseases, Carry Out High Quality Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 339-342. DOI: 10.3969/j.issn.1674-9081.20200040 |
[8] | Qiu-hong MAN, Wei-ye WANG. Applying "Refactoring" Strategies to Promote the Interoperability Across Clinical Biobanks and Utilization of the Research Resources[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(4): 409-413. DOI: 10.3969/j.issn.1674-9081.2019.04.019 |
[9] | Jing TAN, Xing-hui LIU, Xin SUN. Research on Disease Management Based on Real-world Data[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 284-288. DOI: 10.3969/j.issn.1674-9081.2019.03.017 |
[10] | Shu-mei WANG. How Could Clinicians Do a Good Job of Etiologic Research[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(2-3): 183-186. DOI: 10.3969/j.issn.1674-9081.2017.03.018 |
1. |
李富华,张锦玉. 褪黑素对成骨细胞作用机制的研究进展. 中国骨质疏松杂志. 2024(11): 1678-1682 .
![]() | |
2. |
赵琴,王海莹,王辉,张进进,邢颜超. 血小板裂解液凝胶治疗高原难愈性创面一例. 协和医学杂志. 2024(06): 1408-1412 .
![]() |