Ren-zhi WANG, Ming FENG, Yang-hua FAN. Improve the Database of Pituitary Diseases, Carry Out High Quality Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 339-342. DOI: 10.3969/j.issn.1674-9081.20200040
Citation: Ren-zhi WANG, Ming FENG, Yang-hua FAN. Improve the Database of Pituitary Diseases, Carry Out High Quality Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(3): 339-342. DOI: 10.3969/j.issn.1674-9081.20200040

Improve the Database of Pituitary Diseases, Carry Out High Quality Clinical Research

More Information
  • Corresponding author:

    WANG Ren-zhi Tel: 86-10-69156074, E-mail: wangrz@126.com

  • Received Date: February 20, 2020
  • Issue Publish Date: May 29, 2020
  • There are a large number of patients in China, but the distribution of medical resources is unbalanced. The diagnosis and treatment level of pituitary diseases in medical institutions is uneven, which makes this kind of disease easily misdiagnosed and improperly treated. With the development of hospital information technology and internet technology, a large number of clinical medical data can build and improve the database of pituitary diseases after data cleaning. With artificial intelligence technology and real world research methods, data are deeply mined, summarized, and analyzed. In view of problems encountered in clinical practice, we should carry out relevant clinical research, build a more efficient and consistent auxiliary solution to clinical diagnosis and treatment, guide clinicians to formulate more reasonable diagnosis and treatment strategies, and realize individualized diagnosis and treatment for pituitary diseases.
  • [1]
    Petrossians P, Tichomirowa MA, Stevenaert A, et al. The liege acromegaly survey (las):A new software tool for the study of acromegaly[J]. Ann Endocrinol (Paris),2012,73:190-201. DOI: 10.1016/j.ando.2012.05.001
    [2]
    Jenkins D, O'Brien I, Johnson A, et al. The birmingham pituitary database:Auditing the outcome of the treatment of acromegaly[J]. Clin Endocrinol (Oxf),1995,43:517-522. DOI: 10.1111/j.1365-2265.1995.tb02913.x
    [3]
    Drange MR, Fram NR, Herman-Bonert V, et al. Pituitary tumor registry:A novel clinical resource[J]. J Clin Endocrinol Metab,2000,85:168-174.
    [4]
    Katznelson L, Kleinberg D, Vance ML, et al. Hypogon-adism in patients with acromegaly:Data from the multi-centre acromegaly registry pilot study[J]. Clin Endocrinol (Oxf),2001,54:183-188. DOI: 10.1046/j.1365-2265.2001.01214.x
    [5]
    Ferrante E, Ferraroni M, Castrignano T, et al. Non-functioning pituitary adenoma database:A useful resource to improve the clinical management of pituitary tumors[J]. Eur J Endocrinol,2006,155:823-829. DOI: 10.1530/eje.1.02298
    [6]
    Webb SM, Santos A, Valassi E. The value of a european registry for pituitary adenomas:The example of cushing's syndrome registry[J]. Ann Endocrinol (Paris),2012,73:83-89. DOI: 10.1016/j.ando.2012.03.035
    [7]
    Valassi E, Feelders R, Maiter D, et al. Worse health-related quality of life at long-term follow-up in patients with cushing's disease than patients with cortisol producing adenoma. Data from the ercusyn[J]. Clin Endocrinol (Oxf),2018,88:787-798. DOI: 10.1111/cen.13600
    [8]
    Petrossians P, Daly AF, Natchev E, et al. Acromegaly at diagnosis in 3173 patients from the liege acromegaly survey (las) database[J]. Endocr Relat Cancer,2017,24:505-518. DOI: 10.1530/ERC-17-0253
    [9]
    Vandeva S, Andreeva M, Orbetsova M, et al. Acromegaly in bulgaria-epidemiological characteristics derived from the national acromegaly database[J]. Endocrinolgia,2010,15:142-150.
    [10]
    Vandeva S, Elenkova A, Natchev E, et al. Treatment outcome results from the bulgarian acromegaly database:Adjuvant dopamine agonist therapy is efficient in less than one fifth of non-irradiated patients[J]. Exp Clin Endocrinol Diabetes,2015,123:66-71. DOI: 10.1055/s-0034-1389987
    [11]
    Feng M, Hua TR, Wang YF, et al. Demographic characterization of patients enrolled in the china pituitary disease register network[J]. Chin Med J (Engl),2018,131:2871-2873. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhcmj201823017
    [12]
    华天瑞, 王任直, 李军莲, 等. 垂体疾病单中心数据库建设及应用[J]. 中国微侵袭神经外科杂志,2018,23:254-257. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwqxsjwkzz201806004
    [13]
    冯铭, 刘小海, 包新杰, 等. 垂体acth腺瘤切除术后早期内分泌未缓解的病例分析[J]. 中国微侵袭神经外科杂志,2017,22:197-200. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zgwqxsjwkzz201705004
    [14]
    Feng M, Liu Z, Liu X, et al. Diagnosis and outcomes of 341 patients with cushing's disease following transsphenoid surgery:A single-center experience[J]. World Neurosurg,2018,109:e75-e80. DOI: 10.1016/j.wneu.2017.09.105
    [15]
    冯铭, 杨程显, 刘小海, 等. 岩下窦静脉取血判断库欣病肿瘤侧别及影响因素分析[J]. 中华神经外科杂志,2016,32:776-780. http://www.wanfangdata.com.cn/details/detail.do?_type=perio&id=zhsjwkzz98201608004
    [16]
    Liu Y, Liu X, Hong X, et al. Prediction of recurrence after transsphenoidal surgery for cushing's disease:The use of machine learning algorithms[J]. Neuroendocrinology,2019,108:201-210. https://pubmed.ncbi.nlm.nih.gov/30630181/
    [17]
    Fan Y, Li Y, Li Y, et al. Development and assessment of machine learning algorithms for predicting remission after transsphenoidal surgery among patients with acromegaly[J]. Endocrine, 2020,67:412-422. DOI: 10.1007/s12020-019-02121-6
    [18]
    Wei R, Jiang C, Gao J, et al. Deep-learning approach to automatic identification of facial anomalies in endocrine disorders[J]. Neuroendocrinology, 2020,110:328-337. DOI: 10.1159/000502211
    [19]
    Fan Y, Jiang S, Hua M, et al. Machine learning-based radiomics predicts radiotherapeutic response in patients with acromegaly[J]. Front Endocrinol (Lausanne),2019,10:588. DOI: 10.3389/fendo.2019.00588
    [20]
    Fan Y, Liu Z, Hou B, et al. Development and validation of an mri-based radiomic signature for the preoperative prediction of treatment response in patients with invasive functional pituitary adenoma[J]. Eur J Radiol,2019,121:108647. DOI: 10.1016/j.ejrad.2019.108647
  • Related Articles

    [1]LAI Xinxiu, WANG Xiang. Application Status and Research Advances of Artificial Intelligence in Pancreatobiliary Endoscopy[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(2): 387-393. DOI: 10.12290/xhyxzz.2023-0524
    [2]GUAN Xinmiao, ZHU Yanzi, LIU Hao, LUO Minjing, LIANG Changhao, CAO Feng, LIU Zhihan, ZHOU Jianguo, ZHANG Dong, FEI Yutong. Requirements and Technical Aspects of Real-world Data Governance in China's Medical Standards and Guidelines[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0409
    [3]SHI Xiuqing, YAN Siyu, HUANG Qiao, LI Xuhui, WANG Yongbo, MA Wenhao, SHANG Hongcai, JIN Yinghui. Real World Research: Bridging the Gap Between Clinical Practice Guidelines and Clinical Decision Making[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 859-867. DOI: 10.12290/xhyxzz.2022-0217
    [4]YANG Wenlei, LIU Fangfang, XU Ruiping, YANG Wei, HE Yu, LIU Zhen, ZHOU Fuyou, HENG Fanxiu, HOU Bolin, ZHANG Lixin, CHEN Lei, ZHANG Fan, CAI Fen, XU Huawen, LIN Miaoping, LIU Mengfei, PAN Yaqi, LIU Ying, HU Zhe, CHEN Huanyu, HE Zhonghu, KE Yang. Development and Validation of A Prognosis Prediction Model for Esophageal Squamous Cell Carcinoma Patients Treated with Esophagectomy: A Multicenter Real-world Cohort Study[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 101-113. DOI: 10.12290/xhyxzz.2022-0496
    [5]SHI Jiyuan, TIAN Jinhui, GAO Ya, XU Jian'guo, LI Zheng. A Bibliometric Analysis of the Global Research Output on Artificial Intelligence Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 871-879. DOI: 10.12290/xhyxzz.2021-0746
    [6]LI Xiaoyan, LI Chen, CHEN Haoyuan, ZHANG Yong, ZHANG Jingdong. Application and Research Progress of Artificial Intelligence in Digital Pathological Image Analysis of Colorectal Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(4): 542-548. DOI: 10.12290/xhyxzz.2022-0074
    [7]DI Yu, LI Ying. The Application and Research Progress of Artificial Intelligence in Corneal Related Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 761-767. DOI: 10.12290/xhyxzz.2020-0098
    [8]YU Weihong, ZHANG Xiao, WU Chan, CHEN Huan, YANG Zhikun, HE Feng, ZHANG Zhiqiao, ZHANG Bilei, GONG Di, WANG Yuelin, YANG Jingyuan, LI Bing, SUN Yanyuan, MA Yajing, LU Huiqin, XIA Wei, ZHOU Wei, ZHANG Donglei, PAN Qingmin, YANG Ning, WANG Shuna, SUN Xiaolei, YU Ying, SU Chang, WAN Bo, WANG Mingqi, WANG Min, CHEN Youxin. Procedures of Establishing a Well-annotated Database of Color Fundus Photography of Diabetic Retinopathy for Artificial Intelligence Research[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 684-688. DOI: 10.12290/xhyxzz.2021-0613
    [9]Jing TAN, Xing-hui LIU, Xin SUN. Research on Disease Management Based on Real-world Data[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 284-288. DOI: 10.3969/j.issn.1674-9081.2019.03.017
    [10]Yue-song PAN. Data Management and Quality Control for Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 458-462. DOI: 10.3969/j.issn.1674-9081.2018.05.016
  • Cited by

    Periodical cited type(4)

    1. 孙柏旭,李彩凤,张俊梅,邓江红,邝伟英,檀晓华,李超,李士朋. 儿童系统性红斑狼疮210例临床特点及随访研究. 中华实用儿科临床杂志. 2022(24): 1861-1865 .
    2. 徐晓琳,吴一波,韩彤昕,李彩凤,王晓玲. 《患者用药手账》在系统性红斑狼疮患儿药学服务中的应用. 儿科药学杂志. 2021(07): 31-34 .
    3. 黄霞,史源. 儿童系统性红斑狼疮治疗研究进展. 重庆医学. 2021(19): 3385-3388 .
    4. 刘志明,郜苗苗,邵丽丽,朱翠敏,刘秀芬. 系统性红斑狼疮患儿中性粒细胞亚群与外周血自噬相关基因Beclin1表达水平相关性. 分子诊断与治疗杂志. 2021(10): 1669-1672 .

    Other cited types(7)

Catalog

    Article Metrics

    Article views (404) PDF downloads (72) Cited by(11)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close