WU Liyi, YAN Weigang. Research Progress of Prostate Cancer Somatic Mutation and Treatment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 839-843. DOI: 10.12290/xhyxzz.2022-0717
Citation: WU Liyi, YAN Weigang. Research Progress of Prostate Cancer Somatic Mutation and Treatment[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(4): 839-843. DOI: 10.12290/xhyxzz.2022-0717

Research Progress of Prostate Cancer Somatic Mutation and Treatment

Funds: 

National High Level Hospital Clinical Research Funding 2022-PUMCH-A-063

More Information
  • Corresponding author:

    YAN Weigang, E-mail: ywgpumch@sina.com

  • Received Date: December 18, 2022
  • Accepted Date: January 30, 2023
  • Issue Publish Date: July 29, 2023
  • Prostate cancer, one of the most common male malignancies in the world, seriously threatens the health of middle-aged and elderly men. The clinical manifestations and prognosis of prostate cancer patients have individual differences. Most low-risk patients have a slow disease course and a low risk of death, while intermediate- and high-risk patients have a poor prognosis and a high risk of death. Current studies have shown that prostate cancer genes have complex genetic heterogeneity associated with clinical manifestations and somatic mutation is an important part of prostate cancer genome variations. With the development of high-throughput sequencing technology, related research is increasing. This article reviews the research progress on somatic mutations in prostate cancer and treatment to provide reference for prognosis prediction and drug treatment of the disease.
  • [1]
    Sung H, Ferlay J, Siegel RL, et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries[J]. CA Cancer J Clin, 2021, 71: 209-249. DOI: 10.3322/caac.21660
    [2]
    Eastham JA, Auffenberg GB, Barocas DA, et al. Clinically Localized Prostate Cancer: AUA/ASTRO Guideline, Part Ⅰ: Introduction, Risk Assessment, Staging, and Risk-Based Management[J]. J Urol, 2022, 208: 10-18. DOI: 10.1097/JU.0000000000002757
    [3]
    Haffner MC, Zwart W, Roudier MP, et al. Genomic and phenotypic heterogeneity in prostate cancer[J]. Nat Rev Urol, 2021, 18: 79-92. DOI: 10.1038/s41585-020-00400-w
    [4]
    Perner S, Mosquera JM, Demichelis F, et al. TMPRSS2-ERG fusion prostate cancer: an early molecular event associated with invasion[J]. Am J Surg Pathol, 2007, 31: 882-888. DOI: 10.1097/01.pas.0000213424.38503.aa
    [5]
    Zhu Y, Mo M, Wei Y, et al. Epidemiology and genomics of prostate cancer in Asian men[J]. Nat Rev Urol, 2021, 18: 282-301. DOI: 10.1038/s41585-021-00442-8
    [6]
    Kaffenberger SD, Barbieri CE. Molecular subtyping of prostate cancer[J]. Curr Opin Urol, 2016, 26: 213-218. DOI: 10.1097/MOU.0000000000000285
    [7]
    Abeshouse A, Ahn J, Akbani R, et al. The molecular taxonomy of primary prostate cancer[J]. Cell, 2015, 163: 1011-1025. DOI: 10.1016/j.cell.2015.10.025
    [8]
    Stopsack KH, Nandakumar S, Wibmer AG, et al. Onco-genic genomic alterations, clinical phenotypes, and outcomes in metastatic castration-sensitive prostate cancer[J]. Clin Cancer Res, 2020, 26: 3230-3238. DOI: 10.1158/1078-0432.CCR-20-0168
    [9]
    Taitt HE. Global trends and prostate cancer: a review of incidence, detection, and mortality as influenced by race, ethnicity, and geographic location[J]. Am J Mens Health, 2018, 12: 1807-1823. DOI: 10.1177/1557988318798279
    [10]
    Stopsack KH, Nandakumar S, Arora K, et al. Differences in Prostate Cancer Genomes by Self-Reported Race: Contributions of Genetic Ancestry, Modifiable Cancer Risk Factors, and Clinical FactorsRacial Differences in Prostate Cancer Genomes[J]. Clin Cancer Res, 2022, 28: 318-326. DOI: 10.1158/1078-0432.CCR-21-2577
    [11]
    Li J, Xu C, Lee HJ, et al. A genomic and epigenomic atlas of prostate cancer in Asian populations[J]. Nature, 2020, 580: 93-99. DOI: 10.1038/s41586-020-2135-x
    [12]
    Grossmann S, Hooks Y, Wilson L, et al. Development, maturation, and maintenance of human prostate inferred from somatic mutations[J]. Cell Stem Cell, 2021, 28: 1262-1274. DOI: 10.1016/j.stem.2021.02.005
    [13]
    Stjohn J, Powell K, Conley-Lacomb MK, et al. TMPRSS2-ERG Fusion Gene Expression in Prostate Tumor Cells and Its Clinical and Biological Significance in Prostate Cancer Progression[J]. J Cancer Sci Ther, 2012, 4: 94-101.
    [14]
    Zhou F, Gao S, Han D, et al. TMPRSS2-ERG activates NO-cGMP signaling in prostate cancer cells[J]. Oncogene, 2019, 38: 4397-4411. DOI: 10.1038/s41388-019-0730-9
    [15]
    Hong Z, Zhang W, Ding D, et al. DNA damage promotes TMPRSS2-ERG oncoprotein destruction and prostate cancer suppression via signaling converged by GSK3β and WEE1[J]. Mol Cell, 2020, 79: 1008-1023. DOI: 10.1016/j.molcel.2020.07.028
    [16]
    Shoag J, Liu D, Blattner M, et al. SPOP mutation drives prostate neoplasia without stabilizing oncogenic transcription factor ERG[J]. J Clin Invest, 2018, 128: 381-386.
    [17]
    Bernasocchi T, El Tekle G, Bolis M, et al. Dual functions of SPOP and ERG dictate androgen therapy responses in prostate cancer[J]. Nat Commun, 2021, 12: 1-18. DOI: 10.1038/s41467-020-20314-w
    [18]
    Zhang J, Chen M, Zhu Y, et al. SPOP promotes nanog destruction to suppress stem cell traits and prostate cancer progression[J]. Dev Cell, 2019, 48: 329-344. DOI: 10.1016/j.devcel.2018.11.035
    [19]
    Luo Z, Wang J, Zhu Y, et al. SPOP promotes CDCA5 degradation to regulate prostate cancer progression via the AKT pathway[J]. Neoplasia, 2021, 23: 1037-1047. DOI: 10.1016/j.neo.2021.08.002
    [20]
    Teng M, Zhou S, Cai C, et al. Pioneer of prostate cancer: past, present and the future of FOXA1[J]. Protein Cell, 2021, 12: 29-38. DOI: 10.1007/s13238-020-00786-8
    [21]
    Gao S, Chen S, Han D, et al. Forkhead domain mutations in FOXA1 drive prostate cancer progression[J]. Cell Res, 2019, 29: 770-772. DOI: 10.1038/s41422-019-0203-2
    [22]
    Song B, Park SH, Zhao JC, et al. Targeting FOXA1-mediated repression of TGF-β signaling suppresses castration-resistant prostate cancer progression[J]. J Clin Invest, 2019, 129: 569-582.
    [23]
    Zhou S, Hawley J, Soares F, et al. Noncoding mutations target cis-regulatory elements of the FOXA1 plexus in prostate cancer[J]. Nat Commun, 2020, 11: 441. DOI: 10.1038/s41467-020-14318-9
    [24]
    Aurilio G, Cimadamore A, Mazzucchelli R, et al. Androgen receptor signaling pathway in prostate cancer: from genetics to clinical applications[J]. Cells, 2020, 9: 2653. DOI: 10.3390/cells9122653
    [25]
    Li Y, Yang R, Henzler CM, et al. Diverse AR Gene Rearrangements Mediate Resistance to Androgen Receptor Inhibitors in Metastatic Prostate CancerAR Gene Rearrangements in Prostate Cancer[J]. Clin Cancer Res, 2020, 26: 1965-1976. DOI: 10.1158/1078-0432.CCR-19-3023
    [26]
    Zhu Y, Dalrymple SL, Coleman I, et al. Role of androgen receptor splice variant-7 (AR-V7) in prostate cancer resistance to 2nd-generation androgen receptor signaling inhibitors[J]. Oncogene, 2020, 39: 6935-6949. DOI: 10.1038/s41388-020-01479-6
    [27]
    Zhou T, Wang S, Song X, et al. RNF8 up-regulates AR/ARV7 action to contribute to advanced prostate cancer progression[J]. Cell Death Dis, 2022, 13: 1-15.
    [28]
    Donehower LA, Soussi T, Korkut A, et al. Integrated analysis of TP53 gene and pathway alterations in the cancer genome atlas[J]. Cell Rep, 2019, 28: 1370-1384. DOI: 10.1016/j.celrep.2019.07.001
    [29]
    Nientiedt C, Budczies J, Endris V, et al. Mutations in TP53 or DNA damage repair genes define poor prognostic subgroups in primary prostate cancer[J]. Urol Oncol, 2022, 40: 8. e11-8. e18.
    [30]
    Hamid A, Gray P, Shaw G, et al. Compound Genomic Alterations of TP53, PTEN, and RB1 Tumor Suppressors in Localized and Metastatic Prostate Cancer[J]. Eur Urol, 2019, 76: 89-97. DOI: 10.1016/j.eururo.2018.11.045
    [31]
    LIU Z, GUO H, ZHU Y, et al. TP53 alterations of hormone-naive prostate cancer in the Chinese population[J]. Prostate Cancer Prostatic Dis, 2021, 24: 482-491. DOI: 10.1038/s41391-020-00302-3
    [32]
    Annala M, Vandekerkhove G, Khalaf D, et al. Circulating Tumor DNA Genomics Correlate with Resistance to Abiraterone and Enzalutamide in Prostate CancerctDNA and Resistance to AR-Targeted Therapy[J]. Cancer Discov, 2018, 8: 444-457. DOI: 10.1158/2159-8290.CD-17-0937
    [33]
    Rampias T, Karagiannis D, Avgeris M, et al. The lysine specific methyltransferase KMT 2C/MLL 3 regulates DNA repair components in cancer[J]. EMBO Rep, 2019, 20: e46821. DOI: 10.15252/embr.201846821
    [34]
    Wei Y, Wu J, Gu W, et al. Germline DNA repair gene mutation landscape in Chinese prostate cancer patients[J]. Eur Urol, 2019, 76: 280-283. DOI: 10.1016/j.eururo.2019.06.004
    [35]
    Messina C, Cattrini C, Soldato D, et al. BRCA Mutations in Prostate Cancer: Prognostic and Predictive Implications[J]. J Oncol, 2020, 2020: 4986365.
  • Cited by

    Periodical cited type(0)

    Other cited types(1)

Catalog

    Article Metrics

    Article views (557) PDF downloads (44) Cited by(1)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close