Volume 13 Issue 5
Sep.  2022
Turn off MathJax
Article Contents
ZHAO Xinyue, HU Xiaomin, ZHANG Shuyang. Gut Microbiome and Cardiovascular Health: Heart and Gut are Inextricably Linked[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 725-731. doi: 10.12290/xhyxzz.2022-0444
Citation: ZHAO Xinyue, HU Xiaomin, ZHANG Shuyang. Gut Microbiome and Cardiovascular Health: Heart and Gut are Inextricably Linked[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 725-731. doi: 10.12290/xhyxzz.2022-0444

Gut Microbiome and Cardiovascular Health: Heart and Gut are Inextricably Linked

doi: 10.12290/xhyxzz.2022-0444
Funds:

National Natural Science Foundation 8217022134

Beijing Natural Science Foundation 7202152

National High Level Hospital Clinical Research Funding 2022-PUMCH-A-026

More Information
  • Corresponding author: HU Xiaomin, E-mail: huxiaomin2015@163.com; ZHANG Shuyang, E-mail: shuyangzhang103@163.com
  • Received Date: 2022-08-12
  • Accepted Date: 2022-08-24
  • Available Online: 2022-09-07
  • Publish Date: 2022-09-30
  • In recent years, with the progress of multi-omics and next-generation sequencing technology, the association between gut microbiome and cardiovascular diseases has attracted great attention around the world. Gut microbiota, as a "microbial organ", directly regulates the host's health status through lipopolysaccharide, metabolites like trimethylamine oxide and short-chain fatty acids, and affects the host's immunity through bacteria and their products. "Gut-heart axis" may be a breakthrough in the prevention and treatment of cardiovascular diseases. The paper briefly discusses the relationship between gut microbiome and cardiovascular diseases, the possible ways in which gut microbes affect cardiovascular health, and the regulation of gut microbiota by various factors.
  • loading
  • [1] 中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37: 553-578. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202206012.htm

    The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on Cardiovascular Health and Diseases in China 2021: an Updated Summary[J]. Zhongguo Xunhuan Zazhi, 2022, 37: 553-578. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202206012.htm
    [2] Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans[J]. Cell, 2016, 164: 337-340. doi:  10.1016/j.cell.2016.01.013
    [3] Jie Z, Xia H, Zhong SL, et al. The Gut Microbiome in Atherosclerotic Cardiovascular Disease[J]. Nat Commun, 2017, 8: 845. doi:  10.1038/s41467-017-00900-1
    [4] Liu H, Chen X, Hu X, et al. Alterations in The Gut Microbiome and Metabolism with Coronary Artery Disease Severity[J]. Microbiome, 2019, 7: 68. doi:  10.1186/s40168-019-0683-9
    [5] Talmor-Barkan Y, Bar N, Shaul AA, et al. Metabolomic and Microbiome Profiling Reveals Personalized Risk Factors for Coronary Artery Disease[J]. Nat Med, 2022, 28: 295-302. doi:  10.1038/s41591-022-01686-6
    [6] Fromentin S, Forslund SK, Chechi K, et al. Microbiome and Metabolome Features of the Cardiometabolic Disease Spectrum[J]. Nat Med, 2022, 28: 303-314. doi:  10.1038/s41591-022-01688-4
    [7] Kummen M, Mayerhofer CCK, Vestad B, et al. Gut Microbiota Signature in Heart Failure Defined from Profiling of 2 Independent Cohorts[J]. J Am Coll Cardiol, 2018, 71: 1184-1186. doi:  10.1016/j.jacc.2017.12.057
    [8] Beale AL, O'Donnell JA, Nakai ME, et al. The Gut Microbiome of Heart Failure with Preserved Ejection Fraction[J]. J Am Heart Assoc, 2021, 10: e020654. doi:  10.1161/JAHA.120.020654
    [9] Pasini E, Aquilani R, Testa C, et al. Pathogenic Gut Flora in Patients with Chronic Heart Failure[J]. JACC Heart Fail, 2016, 4: 220-227. doi:  10.1016/j.jchf.2015.10.009
    [10] Sandek A, Swidsinski A, Schroedl W, et al. Intestinal Blood Flow in Patients with Chronic Heart Failure: A Link with Bacterial Growth, Gastrointestinal Symptoms, and Cachexia[J]. J Am Coll Cardiol, 2014, 64: 1092-1102. doi:  10.1016/j.jacc.2014.06.1179
    [11] Carrillo-Salinas FJ, Anastasiou M, Ngwenyama N, et al. Gut Dysbiosis Induced by Cardiac Pressure Overload Enhances Adverse Cardiac Remodeling in a T Cell-ependent Manner[J]. Gut Microbes, 2020, 12: 1-20.
    [12] Li J, Zhao F, Wang Y, et al. Gut Microbiota Dysbiosis Contributes to the Development of Hypertension[J]. Microbiome, 2017, 5: 14. doi:  10.1186/s40168-016-0222-x
    [13] Dinakis E, Nakai M, Gill P, et al. Association Between the Gut Microbiome and Their Metabolites with Human Blood Pressure Variability[J]. Hypertension, 2022, 79: 1690-1701. doi:  10.1161/HYPERTENSIONAHA.122.19350
    [14] Chaudhari SN, McCurry MD, Devlin AS. Chains of Evidence from Correlations to Causal Molecules in Microbiome-Linked Diseases[J]. Nat Chem Biol, 2021, 17: 1046-1056. doi:  10.1038/s41589-021-00861-z
    [15] Khan I, Khan I, Kakakhel MA, et al. Comparison of Microbial Populations in the Blood of Patients with Myocardial Infarction and Healthy Individuals[J]. Front Microbiol, 2022, 13: 845038. doi:  10.3389/fmicb.2022.845038
    [16] Rajendhran J, Shankar M, Dinakaran V, et al. Contrasting Circulating Microbiome in Cardiovascular Disease Patients and Healthy Individuals[J]. Int J Cardiol, 2013, 168: 5118-5120. doi:  10.1016/j.ijcard.2013.07.232
    [17] Amar J, Lange C, Payros G, et al. Blood Microbiota Dysbiosis Is Associated with the Onset of Cardiovascular Events in A Large General Population: The D.E.S.I.R. Study[J]. PLoS One, 2013, 8: e54461. doi:  10.1371/journal.pone.0054461
    [18] Zhou X, Li J, Guo J, et al. Gut-Dependent Microbial Translocation Induces Inflammation and Cardiovascular Events After ST-Elevation Myocardial Infarction[J]. Microbiome, 2018, 6: 66. doi:  10.1186/s40168-018-0441-4
    [19] Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of Diverse Bacterial Signatures in Atherosclerotic Lesions of Patients with Coronary Heart Disease[J]. Circulation, 2006, 113: 929-937. doi:  10.1161/CIRCULATIONAHA.105.579979
    [20] Yuzefpolskaya M, Bohn B, Nasiri M, et al. Gut Microbiota, Endotoxemia, Inflammation, And Oxidative Stress in Patients with Heart Failure, Left Ventricular Assist Device, And Transplant[J]. J Heart Lung Transplant, 2020, 39: 880-890. doi:  10.1016/j.healun.2020.02.004
    [21] Violi F, Cammisotto V, Bartimoccia S, et al. Gut-Derived Low-Grade Endotoxaemia, Atherothrombosis and Cardiovascular Disease[J]. Nat Rev Cardiol, 2022, 15: 1-14.
    [22] Wang Z, Tang WHW, Buffa JA, et al. Prognostic Value of Choline and Betaine Depends on Intestinal Microbiota-Generated Metabolite Trimethylamine-N-Oxide[J]. Eur Heart J, 2014, 35: 904-910. doi:  10.1093/eurheartj/ehu002
    [23] Wang Z, Klipfell E, Bennett BJ, et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease[J]. Nature, 2011, 472: 57-63. doi:  10.1038/nature09922
    [24] Zhu W, Gregory JC, Org E, et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk[J]. Cell, 2016, 165: 111-124. doi:  10.1016/j.cell.2016.02.011
    [25] Wang Z, Roberts AB, Buffa JA, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis[J]. Cell, 2015, 163: 1585-1595. doi:  10.1016/j.cell.2015.11.055
    [26] Li XS, Wang Z, Cajka T, et al. Untargeted Metabolomics Identifies Trimethyllysine, A TMAO-Producing Nutrient Precursor, As A Predictor of Incident Cardiovascular Disease Risk[J]. JCI Insight, 2018, 3: e99096. doi:  10.1172/jci.insight.99096
    [27] Li XS, Obeid S, Wang Z, et al. Trimethyllysine, A Trimethylamine N-Oxide Precursor, Provides Near- and Long-Term Prognostic Value in Patients Presenting with Acute Coronary Syndromes[J]. Eur Heart J, 2019, 40: 2700-2709. doi:  10.1093/eurheartj/ehz259
    [28] Zhao M, Wei H, Li C, et al. Gut Microbiota Production of Trimethyl-5-Aminovaleric Acid Reduces Fatty Acid Oxidation and Accelerates Cardiac Hypertrophy[J]. Nat Commun, 2022, 13: 1757. doi:  10.1038/s41467-022-29060-7
    [29] Li L, Zhong SJ, Hu SY, et al. Changes of Gut Microbiome Composition and Metabolites Associated with Hypertensive Heart Failure Rats[J]. BMC microbiol, 2021, 21: 141. doi:  10.1186/s12866-021-02202-5
    [30] Kadir AA, Clarke K, Evans RD. Cardiac Ketone Body Metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866: 165739. doi:  10.1016/j.bbadis.2020.165739
    [31] Carley AN, Maurya SK, Fasano M, et al. Short-Chain Fatty Acids Outpace Ketone Oxidation in the Failing Heart[J]. Circulation, 2021, 143: 1797-1808. doi:  10.1161/CIRCULATIONAHA.120.052671
    [32] Tang TWH, Chen HC, Chen CY, et al. Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair[J]. Circulation, 2019, 139: 647-659. doi:  10.1161/CIRCULATIONAHA.118.035235
    [33] Song T, Guan X, Wang X, et al. Dynamic Modulation of Gut Microbiota Improves Post-Myocardial Infarct Tissue Repair in Rats Via Butyric Acid-Mediated Histone Deacetylase Inhibition[J]. FASEB J, 2021, 35: e21385.
    [34] Pluznick J. A Novel SCFA Receptor, The Microbiota, and Blood Pressure Regulation[J]. Gut Microbes, 2014, 5: 202-207. doi:  10.4161/gmic.27492
    [35] Yang T, Santisteban MM, Rodriguez V, et al. Gut Dysbiosis is Linked to Hypertension[J]. Hypertension, 2015, 65: 1331-1340. doi:  10.1161/HYPERTENSIONAHA.115.05315
    [36] Bartolomaeus H, Balogh A, Yakoub M, et al. Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage[J]. Circulation, 2019, 139: 1407-1421. doi:  10.1161/CIRCULATIONAHA.118.036652
    [37] Mayerhofer CCK, Ueland T, Broch K, et al. Increased Secondary/Primary Bile Acid Ratio in Chronic Heart Failure[J]. J Card Fail, 2017, 23: 666-671. doi:  10.1016/j.cardfail.2017.06.007
    [38] Wu Q, Sun L, Hu X, et al. Suppressing the Intestinal Farnesoid X Receptor/Sphingomyelin Phosphodiesterase 3 Axis Decreases Atherosclerosis[J]. J Clin Invest, 2021, 131: e142865. doi:  10.1172/JCI142865
    [39] Wilck N, Matus MG, Kearney SM, et al. Salt-Responsive Gut Commensal Modulates TH17 Axis and Disease[J]. Nature, 2017, 551: 585-589. doi:  10.1038/nature24628
    [40] Xue H, Chen X, Yu C, et al. Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease[J]. Circ Res, 2022, 131: 404-420. doi:  10.1161/CIRCRESAHA.122.321253
    [41] Barreto FC, Barreto DV, Liabeuf S, et al. Serum Indoxyl Sulfate Is Associated with Vascular Disease and Mortality in Chronic Kidney Disease Patients[J]. Clin J Am Soc Nephrol, 2009, 4: 1551-1558. doi:  10.2215/CJN.03980609
    [42] Poesen R, Claes K, Evenepoel P, et al. Microbiota-Derived Phenylacetylglutamine Associates with Overall Mortality and Cardiovascular Disease in Patients with CKD[J]. J Am Soc Nephrol, 2016, 27: 3479-3487. doi:  10.1681/ASN.2015121302
    [43] Nemet I, Saha PP, Gupta N, et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors[J]. Cell, 2020, 180: 862-877. e22. doi:  10.1016/j.cell.2020.02.016
    [44] Bhattacharya S, Granger CB, Craig D, et al. Validation of The Association Between a Branched Chain Amino Acid Metabolite Profile and Extremes of Coronary Artery Disease in Patients Referred for Cardiac Catheterization[J]. Atherosclerosis, 2014, 232: 191-196. doi:  10.1016/j.atherosclerosis.2013.10.036
    [45] Shah SH, Sun JL, Stevens RD, et al. Baseline Metabolomic Profiles Predict Cardiovascular Events in Patients at Risk for Coronary Artery Disease[J]. Am Heart J, 2012, 163: 844-850. e1 doi:  10.1016/j.ahj.2012.02.005
    [46] Qiao S, Liu C, Sun L, et al. Gut Parabacteroides Merdae Protects Against Cardiovascular Damage by Increasing Commensal Bacteria-Driven Branched-Chain Amino Acid Catabolism[J/OL ]. (2021-09)[2022-08-10]. https://www.researchgate.net/publication/356941523_Gut_Parabacteroides_merdae_protects_against_cardiovascular_damage_by_increasing_commensal_bacteria-driven_branched-chain_amino_acid_catabolism.
    [47] Gowthaman U, Eswarakumar VP. Molecular Mimicry: Good Artists Copy, Great Artists Steal[J]. Virulence, 2013, 4: 433-434. doi:  10.4161/viru.25780
    [48] Gil-Cruz C, Perez-Shibayama C, De Martin A, et al. Microbiota-Derived Peptide Mimics Drive Lethal Inflammatory Cardiomyopathy[J]. Science, 2019, 366: 881-886. doi:  10.1126/science.aav3487
    [49] Suzuki TA, Ley RE. The Role of The Microbiota in Human Genetic Adaptation[J]. Science, 2020, 370: eaaz6827. doi:  10.1126/science.aaz6827
    [50] Forslund SK, Chakaroun R, Zimmermann-Kogadeeva M, et al. Combinatorial, Additive and Dose-Dependent Drug-Microbiome Associations[J]. Nature, 2021, 600: 500-505. doi:  10.1038/s41586-021-04177-9
    [51] Vieira-Silva S, Falony G, Belda E, et al. Statin Therapy Is Associated with Lower Prevalence of Gut Microbiota Dysbiosis[J]. Nature, 2020, 581: 310-315. doi:  10.1038/s41586-020-2269-x
    [52] Hu X, Fan Y, Li H, et al. Impacts of Cigarette Smoking Status on Metabolomic and Gut Microbiota Profile in Male Patients with Coronary Artery Disease: A Multi-Omics Study[J]. Front Cardiovasc Med, 2021, 8: 766739. doi:  10.3389/fcvm.2021.766739
    [53] Zhao X, Zhou R, Li H, et al. The Effects of Moderate Alcohol Consumption on Circulating Metabolites and Gut Microbiota in Patients with Coronary Artery Disease[J]. Front Cardiovasc Med, 2021, 8: 767692. doi:  10.3389/fcvm.2021.767692
    [54] Tian R, Liu H, Feng S, et al. Gut Microbiota Dysbiosis in Stable Coronary Artery Disease Combined with Type 2 Diabetes Mellitus Influences Cardiovascular Prognosis[J]. Nutr Metab Cardiovasc Dis, 2021, 31: 1454-1466. doi:  10.1016/j.numecd.2021.01.007
    [55] Hu X, Zhou R, Li H, et al. Alterations of Gut Microbiome and Serum Metabolome in Coronary Artery Disease Patients Complicated with Non-alcoholic Fatty Liver Disease Are Associated with Adverse Cardiovascular Outcomes[J]. Front Cardiovasc Med, 2022, 8: 805812.
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (3500) PDF downloads(275) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return