Citation: | ZHAO Xinyue, HU Xiaomin, ZHANG Shuyang. Gut Microbiome and Cardiovascular Health: Heart and Gut are Inextricably Linked[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 725-731. DOI: 10.12290/xhyxzz.2022-0444 |
[1] |
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2021概要[J]. 中国循环杂志, 2022, 37: 553-578. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202206012.htm
The Writing Committee of the Report on Cardiovascular Health and Diseases in China. Report on Cardiovascular Health and Diseases in China 2021: an Updated Summary[J]. Zhongguo Xunhuan Zazhi, 2022, 37: 553-578. https://www.cnki.com.cn/Article/CJFDTOTAL-ZGXH202206012.htm
|
[2] |
Sender R, Fuchs S, Milo R. Are We Really Vastly Outnumbered? Revisiting the Ratio of Bacterial to Host Cells in Humans[J]. Cell, 2016, 164: 337-340. DOI: 10.1016/j.cell.2016.01.013
|
[3] |
Jie Z, Xia H, Zhong SL, et al. The Gut Microbiome in Atherosclerotic Cardiovascular Disease[J]. Nat Commun, 2017, 8: 845. DOI: 10.1038/s41467-017-00900-1
|
[4] |
Liu H, Chen X, Hu X, et al. Alterations in The Gut Microbiome and Metabolism with Coronary Artery Disease Severity[J]. Microbiome, 2019, 7: 68. DOI: 10.1186/s40168-019-0683-9
|
[5] |
Talmor-Barkan Y, Bar N, Shaul AA, et al. Metabolomic and Microbiome Profiling Reveals Personalized Risk Factors for Coronary Artery Disease[J]. Nat Med, 2022, 28: 295-302. DOI: 10.1038/s41591-022-01686-6
|
[6] |
Fromentin S, Forslund SK, Chechi K, et al. Microbiome and Metabolome Features of the Cardiometabolic Disease Spectrum[J]. Nat Med, 2022, 28: 303-314. DOI: 10.1038/s41591-022-01688-4
|
[7] |
Kummen M, Mayerhofer CCK, Vestad B, et al. Gut Microbiota Signature in Heart Failure Defined from Profiling of 2 Independent Cohorts[J]. J Am Coll Cardiol, 2018, 71: 1184-1186. DOI: 10.1016/j.jacc.2017.12.057
|
[8] |
Beale AL, O'Donnell JA, Nakai ME, et al. The Gut Microbiome of Heart Failure with Preserved Ejection Fraction[J]. J Am Heart Assoc, 2021, 10: e020654. DOI: 10.1161/JAHA.120.020654
|
[9] |
Pasini E, Aquilani R, Testa C, et al. Pathogenic Gut Flora in Patients with Chronic Heart Failure[J]. JACC Heart Fail, 2016, 4: 220-227. DOI: 10.1016/j.jchf.2015.10.009
|
[10] |
Sandek A, Swidsinski A, Schroedl W, et al. Intestinal Blood Flow in Patients with Chronic Heart Failure: A Link with Bacterial Growth, Gastrointestinal Symptoms, and Cachexia[J]. J Am Coll Cardiol, 2014, 64: 1092-1102. DOI: 10.1016/j.jacc.2014.06.1179
|
[11] |
Carrillo-Salinas FJ, Anastasiou M, Ngwenyama N, et al. Gut Dysbiosis Induced by Cardiac Pressure Overload Enhances Adverse Cardiac Remodeling in a T Cell-ependent Manner[J]. Gut Microbes, 2020, 12: 1-20.
|
[12] |
Li J, Zhao F, Wang Y, et al. Gut Microbiota Dysbiosis Contributes to the Development of Hypertension[J]. Microbiome, 2017, 5: 14. DOI: 10.1186/s40168-016-0222-x
|
[13] |
Dinakis E, Nakai M, Gill P, et al. Association Between the Gut Microbiome and Their Metabolites with Human Blood Pressure Variability[J]. Hypertension, 2022, 79: 1690-1701. DOI: 10.1161/HYPERTENSIONAHA.122.19350
|
[14] |
Chaudhari SN, McCurry MD, Devlin AS. Chains of Evidence from Correlations to Causal Molecules in Microbiome-Linked Diseases[J]. Nat Chem Biol, 2021, 17: 1046-1056. DOI: 10.1038/s41589-021-00861-z
|
[15] |
Khan I, Khan I, Kakakhel MA, et al. Comparison of Microbial Populations in the Blood of Patients with Myocardial Infarction and Healthy Individuals[J]. Front Microbiol, 2022, 13: 845038. DOI: 10.3389/fmicb.2022.845038
|
[16] |
Rajendhran J, Shankar M, Dinakaran V, et al. Contrasting Circulating Microbiome in Cardiovascular Disease Patients and Healthy Individuals[J]. Int J Cardiol, 2013, 168: 5118-5120. DOI: 10.1016/j.ijcard.2013.07.232
|
[17] |
Amar J, Lange C, Payros G, et al. Blood Microbiota Dysbiosis Is Associated with the Onset of Cardiovascular Events in A Large General Population: The D.E.S.I.R. Study[J]. PLoS One, 2013, 8: e54461. DOI: 10.1371/journal.pone.0054461
|
[18] |
Zhou X, Li J, Guo J, et al. Gut-Dependent Microbial Translocation Induces Inflammation and Cardiovascular Events After ST-Elevation Myocardial Infarction[J]. Microbiome, 2018, 6: 66. DOI: 10.1186/s40168-018-0441-4
|
[19] |
Ott SJ, El Mokhtari NE, Musfeldt M, et al. Detection of Diverse Bacterial Signatures in Atherosclerotic Lesions of Patients with Coronary Heart Disease[J]. Circulation, 2006, 113: 929-937. DOI: 10.1161/CIRCULATIONAHA.105.579979
|
[20] |
Yuzefpolskaya M, Bohn B, Nasiri M, et al. Gut Microbiota, Endotoxemia, Inflammation, And Oxidative Stress in Patients with Heart Failure, Left Ventricular Assist Device, And Transplant[J]. J Heart Lung Transplant, 2020, 39: 880-890. DOI: 10.1016/j.healun.2020.02.004
|
[21] |
Violi F, Cammisotto V, Bartimoccia S, et al. Gut-Derived Low-Grade Endotoxaemia, Atherothrombosis and Cardiovascular Disease[J]. Nat Rev Cardiol, 2022, 15: 1-14.
|
[22] |
Wang Z, Tang WHW, Buffa JA, et al. Prognostic Value of Choline and Betaine Depends on Intestinal Microbiota-Generated Metabolite Trimethylamine-N-Oxide[J]. Eur Heart J, 2014, 35: 904-910. DOI: 10.1093/eurheartj/ehu002
|
[23] |
Wang Z, Klipfell E, Bennett BJ, et al. Gut Flora Metabolism of Phosphatidylcholine Promotes Cardiovascular Disease[J]. Nature, 2011, 472: 57-63. DOI: 10.1038/nature09922
|
[24] |
Zhu W, Gregory JC, Org E, et al. Gut Microbial Metabolite TMAO Enhances Platelet Hyperreactivity and Thrombosis Risk[J]. Cell, 2016, 165: 111-124. DOI: 10.1016/j.cell.2016.02.011
|
[25] |
Wang Z, Roberts AB, Buffa JA, et al. Non-lethal Inhibition of Gut Microbial Trimethylamine Production for the Treatment of Atherosclerosis[J]. Cell, 2015, 163: 1585-1595. DOI: 10.1016/j.cell.2015.11.055
|
[26] |
Li XS, Wang Z, Cajka T, et al. Untargeted Metabolomics Identifies Trimethyllysine, A TMAO-Producing Nutrient Precursor, As A Predictor of Incident Cardiovascular Disease Risk[J]. JCI Insight, 2018, 3: e99096. DOI: 10.1172/jci.insight.99096
|
[27] |
Li XS, Obeid S, Wang Z, et al. Trimethyllysine, A Trimethylamine N-Oxide Precursor, Provides Near- and Long-Term Prognostic Value in Patients Presenting with Acute Coronary Syndromes[J]. Eur Heart J, 2019, 40: 2700-2709. DOI: 10.1093/eurheartj/ehz259
|
[28] |
Zhao M, Wei H, Li C, et al. Gut Microbiota Production of Trimethyl-5-Aminovaleric Acid Reduces Fatty Acid Oxidation and Accelerates Cardiac Hypertrophy[J]. Nat Commun, 2022, 13: 1757. DOI: 10.1038/s41467-022-29060-7
|
[29] |
Li L, Zhong SJ, Hu SY, et al. Changes of Gut Microbiome Composition and Metabolites Associated with Hypertensive Heart Failure Rats[J]. BMC microbiol, 2021, 21: 141. DOI: 10.1186/s12866-021-02202-5
|
[30] |
Kadir AA, Clarke K, Evans RD. Cardiac Ketone Body Metabolism[J]. Biochim Biophys Acta Mol Basis Dis, 2020, 1866: 165739. DOI: 10.1016/j.bbadis.2020.165739
|
[31] |
Carley AN, Maurya SK, Fasano M, et al. Short-Chain Fatty Acids Outpace Ketone Oxidation in the Failing Heart[J]. Circulation, 2021, 143: 1797-1808. DOI: 10.1161/CIRCULATIONAHA.120.052671
|
[32] |
Tang TWH, Chen HC, Chen CY, et al. Loss of Gut Microbiota Alters Immune System Composition and Cripples Postinfarction Cardiac Repair[J]. Circulation, 2019, 139: 647-659. DOI: 10.1161/CIRCULATIONAHA.118.035235
|
[33] |
Song T, Guan X, Wang X, et al. Dynamic Modulation of Gut Microbiota Improves Post-Myocardial Infarct Tissue Repair in Rats Via Butyric Acid-Mediated Histone Deacetylase Inhibition[J]. FASEB J, 2021, 35: e21385.
|
[34] |
Pluznick J. A Novel SCFA Receptor, The Microbiota, and Blood Pressure Regulation[J]. Gut Microbes, 2014, 5: 202-207. DOI: 10.4161/gmic.27492
|
[35] |
Yang T, Santisteban MM, Rodriguez V, et al. Gut Dysbiosis is Linked to Hypertension[J]. Hypertension, 2015, 65: 1331-1340. DOI: 10.1161/HYPERTENSIONAHA.115.05315
|
[36] |
Bartolomaeus H, Balogh A, Yakoub M, et al. Short-Chain Fatty Acid Propionate Protects from Hypertensive Cardiovascular Damage[J]. Circulation, 2019, 139: 1407-1421. DOI: 10.1161/CIRCULATIONAHA.118.036652
|
[37] |
Mayerhofer CCK, Ueland T, Broch K, et al. Increased Secondary/Primary Bile Acid Ratio in Chronic Heart Failure[J]. J Card Fail, 2017, 23: 666-671. DOI: 10.1016/j.cardfail.2017.06.007
|
[38] |
Wu Q, Sun L, Hu X, et al. Suppressing the Intestinal Farnesoid X Receptor/Sphingomyelin Phosphodiesterase 3 Axis Decreases Atherosclerosis[J]. J Clin Invest, 2021, 131: e142865. DOI: 10.1172/JCI142865
|
[39] |
Wilck N, Matus MG, Kearney SM, et al. Salt-Responsive Gut Commensal Modulates TH17 Axis and Disease[J]. Nature, 2017, 551: 585-589. DOI: 10.1038/nature24628
|
[40] |
Xue H, Chen X, Yu C, et al. Gut Microbially Produced Indole-3-Propionic Acid Inhibits Atherosclerosis by Promoting Reverse Cholesterol Transport and Its Deficiency Is Causally Related to Atherosclerotic Cardiovascular Disease[J]. Circ Res, 2022, 131: 404-420. DOI: 10.1161/CIRCRESAHA.122.321253
|
[41] |
Barreto FC, Barreto DV, Liabeuf S, et al. Serum Indoxyl Sulfate Is Associated with Vascular Disease and Mortality in Chronic Kidney Disease Patients[J]. Clin J Am Soc Nephrol, 2009, 4: 1551-1558. DOI: 10.2215/CJN.03980609
|
[42] |
Poesen R, Claes K, Evenepoel P, et al. Microbiota-Derived Phenylacetylglutamine Associates with Overall Mortality and Cardiovascular Disease in Patients with CKD[J]. J Am Soc Nephrol, 2016, 27: 3479-3487. DOI: 10.1681/ASN.2015121302
|
[43] |
Nemet I, Saha PP, Gupta N, et al. A Cardiovascular Disease-Linked Gut Microbial Metabolite Acts via Adrenergic Receptors[J]. Cell, 2020, 180: 862-877. e22. DOI: 10.1016/j.cell.2020.02.016
|
[44] |
Bhattacharya S, Granger CB, Craig D, et al. Validation of The Association Between a Branched Chain Amino Acid Metabolite Profile and Extremes of Coronary Artery Disease in Patients Referred for Cardiac Catheterization[J]. Atherosclerosis, 2014, 232: 191-196. DOI: 10.1016/j.atherosclerosis.2013.10.036
|
[45] |
Shah SH, Sun JL, Stevens RD, et al. Baseline Metabolomic Profiles Predict Cardiovascular Events in Patients at Risk for Coronary Artery Disease[J]. Am Heart J, 2012, 163: 844-850. e1 DOI: 10.1016/j.ahj.2012.02.005
|
[46] |
Qiao S, Liu C, Sun L, et al. Gut Parabacteroides Merdae Protects Against Cardiovascular Damage by Increasing Commensal Bacteria-Driven Branched-Chain Amino Acid Catabolism[J/OL ]. (2021-09)[2022-08-10]. https://www.researchgate.net/publication/356941523_Gut_Parabacteroides_merdae_protects_against_cardiovascular_damage_by_increasing_commensal_bacteria-driven_branched-chain_amino_acid_catabolism.
|
[47] |
Gowthaman U, Eswarakumar VP. Molecular Mimicry: Good Artists Copy, Great Artists Steal[J]. Virulence, 2013, 4: 433-434. DOI: 10.4161/viru.25780
|
[48] |
Gil-Cruz C, Perez-Shibayama C, De Martin A, et al. Microbiota-Derived Peptide Mimics Drive Lethal Inflammatory Cardiomyopathy[J]. Science, 2019, 366: 881-886. DOI: 10.1126/science.aav3487
|
[49] |
Suzuki TA, Ley RE. The Role of The Microbiota in Human Genetic Adaptation[J]. Science, 2020, 370: eaaz6827. DOI: 10.1126/science.aaz6827
|
[50] |
Forslund SK, Chakaroun R, Zimmermann-Kogadeeva M, et al. Combinatorial, Additive and Dose-Dependent Drug-Microbiome Associations[J]. Nature, 2021, 600: 500-505. DOI: 10.1038/s41586-021-04177-9
|
[51] |
Vieira-Silva S, Falony G, Belda E, et al. Statin Therapy Is Associated with Lower Prevalence of Gut Microbiota Dysbiosis[J]. Nature, 2020, 581: 310-315. DOI: 10.1038/s41586-020-2269-x
|
[52] |
Hu X, Fan Y, Li H, et al. Impacts of Cigarette Smoking Status on Metabolomic and Gut Microbiota Profile in Male Patients with Coronary Artery Disease: A Multi-Omics Study[J]. Front Cardiovasc Med, 2021, 8: 766739. DOI: 10.3389/fcvm.2021.766739
|
[53] |
Zhao X, Zhou R, Li H, et al. The Effects of Moderate Alcohol Consumption on Circulating Metabolites and Gut Microbiota in Patients with Coronary Artery Disease[J]. Front Cardiovasc Med, 2021, 8: 767692. DOI: 10.3389/fcvm.2021.767692
|
[54] |
Tian R, Liu H, Feng S, et al. Gut Microbiota Dysbiosis in Stable Coronary Artery Disease Combined with Type 2 Diabetes Mellitus Influences Cardiovascular Prognosis[J]. Nutr Metab Cardiovasc Dis, 2021, 31: 1454-1466. DOI: 10.1016/j.numecd.2021.01.007
|
[55] |
Hu X, Zhou R, Li H, et al. Alterations of Gut Microbiome and Serum Metabolome in Coronary Artery Disease Patients Complicated with Non-alcoholic Fatty Liver Disease Are Associated with Adverse Cardiovascular Outcomes[J]. Front Cardiovasc Med, 2022, 8: 805812.
|
[1] | CHEN Yuqing, LI Jinming. Virological Characteristics of the Omicron Variant: Key Mutations, Pathogenicity, and Immune Escape[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 945-952. DOI: 10.12290/xhyxzz.2023-0139 |
[2] | HUANG Biqing, LI Lanjuan. The Impact of Gut Microbiota on Vaccine Immune Efficacy and Potential Mechanisms[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 939-944. DOI: 10.12290/xhyxzz.2023-0173 |
[3] | JIANG Xu, YANG Huaxia, ZHANG Fengchun. The Role of the Gut Microbial Metabolites in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 747-752. DOI: 10.12290/xhyxzz.2022-0246 |
[4] | Gynecological Oncology Society of Chinese Medical Association. Clinical Practice Guidelines for Immune Checkpoint Inhibitor Therapy in Gynecological Tumors[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 854-880. DOI: 10.12290/xhyxzz.2021-0683 |
[5] | HAN Jie, YU Hong. Progress in Immune Markers and Relevant Drug Therapies of Mycosis Fungoides[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(4): 568-574. DOI: 10.12290/xhyxzz.20200278 |
[6] | WU Ling-ge, XU Yan, LI Nai-shi. Thyrotoxicosis Related to Immune Checkpoint Inhibitors[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 129-135. DOI: 10.3969/j.issn.1674-9081.2020.00.004 |
[7] | Yang GAO, Zhao SUN, Chun-mei BAI. Application of Immune-checkpoint Inhibitors in Recurrent/Metastatic Nasopharyngeal Carcinoma[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 626-630. DOI: 10.3969/j.issn.1674-9081.2020.05.021 |
[8] | Hui TANG, Jian-feng ZHOU, Chun-mei BAI. Clinical Progress of Immune Checkpoint Inhibitors in the Elderly[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(4): 459-464. DOI: 10.3969/j.issn.1674-9081.2020.04.018 |
[9] | Yu-hao JIAO, Bei-di CHEN, Xuan ZHANG. Interplay between the Gut Microbiota and the Innate Immune System[J]. Medical Journal of Peking Union Medical College Hospital, 2019, 10(3): 257-262. DOI: 10.3969/j.issn.1674-9081.2019.03.012 |
[10] | Yu-chao LIU, Tai-sheng LI. Immune Activation and Incomplete Immune Reconstitution in Chronic Human Immunodeficiency Virus Infected Patients[J]. Medical Journal of Peking Union Medical College Hospital, 2017, 8(4-5): 210-214. DOI: 10.3969/j.issn.1674-9081.2017.05.004 |
1. |
刘会敏,时素华,高俊霞,李志刚,YIRAN LI. “养心调肠”针法治疗腹泻型肠易激综合征肝郁脾虚证理论探讨. 陕西中医. 2023(10): 1427-1430 .
![]() |