Citation: | JIANG Xu, YANG Huaxia, ZHANG Fengchun. The Role of the Gut Microbial Metabolites in Autoimmune Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 747-752. DOI: 10.12290/xhyxzz.2022-0246 |
[1] |
Maynard CL, Elson CO, Hatton RD, et al. Reciprocal interactions of the intestinal microbiota and immune system[J]. Nature, 2012, 489: 231-241. DOI: 10.1038/nature11551
|
[2] |
Zhang X, Chen BD, Zhao LD, et al. The Gut Microbiota: Emerging Evidence in Autoimmune Diseases[J]. Trends Mol Med, 2020, 26: 862-873. DOI: 10.1016/j.molmed.2020.04.001
|
[3] |
Zhang X, Zhang D, Jia H, et al. The oral and gut microbiomes are perturbed in rheumatoid arthritis and partly normalized after treatment[J]. Nat Med, 2015, 21: 895-905. DOI: 10.1038/nm.3914
|
[4] |
Alpizar-Rodriguez D, Lesker TR, Gronow A, et al. Prevotella copri in individuals at risk for rheumatoid arthritis[J]. Ann Rheum Dis, 2019, 78: 590-593. DOI: 10.1136/annrheumdis-2018-214514
|
[5] |
Azzouz D, Omarbekova A, Heguy A, et al. Lupus nephritis is linked to disease-activity associated expansions and immunity to a gut commensal[J]. Ann Rheum Dis, 2019, 78: 947-956. DOI: 10.1136/annrheumdis-2018-214856
|
[6] |
Chen BD, Jia XM, Xu JY, et al. An Autoimmunogenic and Proinflammatory Profile Defined by the Gut Microbiota of Patients With Untreated Systemic Lupus Erythematosus[J]. Arthritis Rheumatol, 2021, 73: 232-243.
|
[7] |
Halfvarson J, Brislawn CJ, Lamendella R, et al. Dynamics of the human gut microbiome in inflammatory bowel disease[J]. Nat Microbiol, 2017, 2: 17004. DOI: 10.1038/nmicrobiol.2017.4
|
[8] |
Tang R, Wei Y, Li Y, et al. Gut microbial profile is altered in primary biliary cholangitis and partially restored after UDCA therapy[J]. Gut, 2018, 67: 534-541. DOI: 10.1136/gutjnl-2016-313332
|
[9] |
Jangi S, Gandhi R, Cox LM, et al. Alterations of the human gut microbiome in multiple sclerosis[J]. Nat Commun, 2016, 7: 12015. DOI: 10.1038/ncomms12015
|
[10] |
Wen C, Zheng Z, Shao T, et al. Quantitative metagenomics reveals unique gut microbiome biomarkers in ankylosing spondylitis[J]. Genome Biol, 2017, 18: 142. DOI: 10.1186/s13059-017-1271-6
|
[11] |
Zhou C, Zhao H, Xiao XY, et al. Metagenomic profiling of the pro-inflammatory gut microbiota in ankylosing spondylitis[J]. J Autoimmun, 2020, 107: 102360. DOI: 10.1016/j.jaut.2019.102360
|
[12] |
Mandl T, Marsal J, Olsson P, et al. Severe intestinal dysbiosis is prevalent in primary Sjögren's syndrome and is associated with systemic disease activity[J]. Arthritis Res Ther, 2017, 19: 237. DOI: 10.1186/s13075-017-1446-2
|
[13] |
Ye Z, Zhang N, Wu C, et al. A metagenomic study of the gut microbiome in Behcet's disease[J]. Microbiome, 2018, 6: 135. DOI: 10.1186/s40168-018-0520-6
|
[14] |
Schroeder BO. Fight them or feed them: how the intestinal mucus layer manages the gut microbiota[J]. Gastroenterol Rep (Oxf), 2019, 7: 3-12. DOI: 10.1093/gastro/goy052
|
[15] |
Nastasi C, Candela M, Bonefeld CM, et al. The effect of short-chain fatty acids on human monocyte-derived dendritic cells[J]. Sci Rep, 2015, 5: 16148. DOI: 10.1038/srep16148
|
[16] |
Schulthess J, Pandey S, Capitani M. et al. The Short Chain Fatty Acid Butyrate Imprints an Antimicrobial Program in Macrophages[J]. Immunity, 2019, 50: 432-445. e7. DOI: 10.1016/j.immuni.2018.12.018
|
[17] |
Furusawa Y, Obata Y, Fukuda S, et al. Commensal microbe-derived butyrate induces the differentiation of colonic regulatory T cells[J]. Nature, 2013, 504: 446-450. DOI: 10.1038/nature12721
|
[18] |
Smith PM, Howitt MR, Panikov N, et al. The microbial metabolites, short-chain fatty acids, regulate colonic Treg cell homeostasis[J]. Science, 2013, 341: 569-573. DOI: 10.1126/science.1241165
|
[19] |
Wu W, Sun M, Chen F, et al. Microbiota metabolite short-chain fatty acid acetate promotes intestinal IgA response to microbiota which is mediated by GPR43[J]. Mucosal Immunol, 2017, 10: 946-956. DOI: 10.1038/mi.2016.114
|
[20] |
Sun M, Wu W, Chen L, et al. Microbiota-derived short-chain fatty acids promote Th1 cell IL-10 production to maintain intestinal homeostasis[J]. Nat Commun, 2018, 9: 3555. DOI: 10.1038/s41467-018-05901-2
|
[21] |
Bachem A, Makhlouf C, Binger KJ, et al. Microbiota-Derived Short-Chain Fatty Acids Promote the Memory Potential of Antigen-Activated CD8(+) T Cells[J]. Immunity, 2019, 51: 285-297. e5. DOI: 10.1016/j.immuni.2019.06.002
|
[22] |
Yang W, Yu T, Huang X, et al. Intestinal microbiota-derived short-chain fatty acids regulation of immune cell IL-22 production and gut immunity[J]. Nat Commun, 2020, 11: 4457. DOI: 10.1038/s41467-020-18262-6
|
[23] |
Atarashi K, Tanoue T, Oshima K, et al. Treg induction by a rationally selected mixture of Clostridia strains from the human microbiota[J]. Nature, 2013, 500: 232-236. DOI: 10.1038/nature12331
|
[24] |
Rosser EC, Piper CJM, Matei DE, et al. Microbiota-Derived Metabolites Suppress Arthritis by Amplifying Aryl-Hydrocarbon Receptor Activation in Regulatory B Cells[J]. Cell Metab, 2020, 31: 837-851. e10. DOI: 10.1016/j.cmet.2020.03.003
|
[25] |
Mizuno M, Noto D, Kaga N, et al. The dual role of short fatty acid chains in the pathogenesis of autoimmune disease models[J]. PLoS One, 2017, 12: e0173032. DOI: 10.1371/journal.pone.0173032
|
[26] |
Rodriguez-Carrio J, Lopez P, Sanchez B, et al. Intestinal Dysbiosis Is Associated with Altered Short-Chain Fatty Acids and Serum-Free Fatty Acids in Systemic Lupus Erythe-matosus[J]. Front Immunol, 2017, 8: 23.
|
[27] |
Zegarra-Ruiz DF, El Beidaq A, Iniguez AJ, et al. A Diet-Sensitive Commensal Lactobacillus Strain Mediates TLR7-Dependent Systemic Autoimmunity[J]. Cell Host Microbe, 2019, 25: 113-127 e6. DOI: 10.1016/j.chom.2018.11.009
|
[28] |
Haghikia A, Jorg S, Duscha A, et al. Dietary Fatty Acids Directly Impact Central Nervous System Autoimmunity via the Small Intestine[J]. Immunity, 2015, 43: 817-829. DOI: 10.1016/j.immuni.2015.09.007
|
[29] |
Erny D, Hrabe de Angelis AL, Jaitin D, et al. Host microbiota constantly control maturation and function of microglia in the CNS[J]. Nat Neurosci, 2015, 18: 965-977. DOI: 10.1038/nn.4030
|
[30] |
Cano-Ortiz A, Laborda-Illanes A, Plaza-Andrades I, et al. Connection between the Gut Microbiome, Systemic Inflamma-tion, Gut Permeability and FOXP3 Expression in Patients with Primary Sjogren's Syndrome[J]. Int J Mol Sci, 2020, 21: 8733. DOI: 10.3390/ijms21228733
|
[31] |
Chen X, Su W, Wan T, et al. Sodium butyrate regulates Th17/Treg cell balance to ameliorate uveitis via the Nrf2/HO-1 pathway[J]. Biochem Pharmacol, 2017, 142: 111-119. DOI: 10.1016/j.bcp.2017.06.136
|
[32] |
Lloyd-Price J, Arze C, Ananthakrishnan AN, et al. Multi-omics of the gut microbial ecosystem in inflammatory bowel diseases[J]. Nature, 2019, 569: 655-662. DOI: 10.1038/s41586-019-1237-9
|
[33] |
Biagioli M, Carino A, Cipriani S, et al. The Bile Acid Receptor GPBAR1 Regulates the M1/M2 Phenotype of Intes-tinal Macrophages and Activation of GPBAR1 Rescues Mice from Murine Colitis[J]. J Immunol, 2017, 199: 718-733. DOI: 10.4049/jimmunol.1700183
|
[34] |
Krautkramer KA, Fan J, Backhed F. Gut microbial metabolites as multi-kingdom intermediates[J]. Nat Rev Microbiol, 2021, 19: 77-94. DOI: 10.1038/s41579-020-0438-4
|
[35] |
Singh NP, Singh UP, Rouse M, et al. Dietary Indoles Suppress Delayed-Type Hypersensitivity by Inducing a Switch from Proinflammatory Th17 Cells to Anti-Inflammatory Regulatory T Cells through Regulation of MicroRNA[J]. J Immunol, 2016, 196: 1108-1122. DOI: 10.4049/jimmunol.1501727
|
[36] |
Cervantes-Barragan L, Chai JN, Tianero MD, et al. Lactobacillus reuteri induces gut intraepithelial CD4(+)CD8alphaalpha(+) T cells[J]. Science, 2017, 357: 806-810. DOI: 10.1126/science.aah5825
|
[37] |
Pongratz G, Lowin T, Sewerin P, et al. Tryptophan metabolism in rheumatoid arthritis is associated with rheumatoid factor and predicts joint pathology evaluated by the Rheumatoid Arthritis MRI Score (RAMRIS)[J]. Clin Exp Rheumatol, 2019, 37: 450-457.
|
[38] |
Hasan H, Ismail H, El-Orfali Y, et al. Therapeutic benefits of Indole-3-Carbinol in adjuvant-induced arthritis and its protective effect against methotrexate induced-hepatic toxicity[J]. BMC Complement Altern Med, 2018, 18: 337. DOI: 10.1186/s12906-018-2408-1
|
[39] |
Langan D, Perkins DJ, Vogel SN, et al. Microbiota-Derived Metabolites, Indole-3-aldehyde and Indole-3-acetic Acid, Differentially Modulate Innate Cytokines and Stromal Remodeling Processes Associated with Autoimmune Arthritis[J]. Int J Mol Sci, 2021, 22.
|
[40] |
Rothhammer V, Mascanfroni ID, Bunse L, et al. Type I interferons and microbial metabolites of tryptophan modulate astrocyte activity and central nervous system inflammation via the aryl hydrocarbon receptor[J]. Nat Med, 2016, 22: 586-597. DOI: 10.1038/nm.4106
|
[41] |
Lamas B, Richard ML, Leducq V, et al. CARD9 impacts colitis by altering gut microbiota metabolism of tryptophan into aryl hydrocarbon receptor ligands[J]. Nat Med, 2016, 22: 598-605. DOI: 10.1038/nm.4102
|
[42] |
Stockinger B, Shah K, Wincent E. AHR in the intestinal microenvironment: safeguarding barrier function[J]. Nat Rev Gastroenterol Hepatol, 2021, 18: 559-570. DOI: 10.1038/s41575-021-00430-8
|
[43] |
Funabashi M, Grove TL, Wang M, et al. A metabolic pathway for bile acid dehydroxylation by the gut microbiome[J]. Nature, 2020, 582: 566-570. DOI: 10.1038/s41586-020-2396-4
|
[44] |
Jia W, Xie G, Jia W. Bile acid-microbiota crosstalk in gastrointestinal inflammation and carcinogenesis[J]. Nat Rev Gastroenterol Hepatol, 2018, 15: 111-128. DOI: 10.1038/nrgastro.2017.119
|
[45] |
Fiorucci S, Biagioli M, Zampella A, et al. Bile Acids Activated Receptors Regulate Innate Immunity[J]. Front Immunol, 2018, 9: 1853. DOI: 10.3389/fimmu.2018.01853
|
[46] |
Hang S, Paik D, Yao L, et al. Bile acid metabolites control TH17 and Treg cell differentiation[J]. Nature, 2019, 576: 143-148. DOI: 10.1038/s41586-019-1785-z
|
[47] |
Song X, Sun X, Oh SF, et al. Microbial bile acid metabolites modulate gut RORgamma(+) regulatory T cell homeostasis[J]. Nature, 2020, 577: 410-415. DOI: 10.1038/s41586-019-1865-0
|
[48] |
Ma C, Han M, Heinrich B, et al. Gut microbiome-mediated bile acid metabolism regulates liver cancer via NKT cells[J]. Science, 2018, 360: eaan5931. DOI: 10.1126/science.aan5931
|
[49] |
Chen W, Wei Y, Xiong A, et al. Comprehensive Analysis of Serum and Fecal Bile Acid Profiles and Interaction with Gut Microbiota in Primary Biliary Cholangitis[J]. Clin Rev Allergy Immunol, 2020, 58: 25-38. DOI: 10.1007/s12016-019-08731-2
|
[50] |
Li B, Zhang J, Chen Y, et al. Alterations in microbiota and their metabolites are associated with beneficial effects of bile acid sequestrant on icteric primary biliary Cholangitis[J]. Gut Microbes, 2021, 13: 1946366. DOI: 10.1080/19490976.2021.1946366
|
[51] |
Bartikoski BJ, De Oliveira MS, Do Espirito Santo RC, et al. A Review of Metabolomic Profiling in Rheumatoid Arthritis: Bringing New Insights in Disease Pathogenesis, Treatment and Comorbidities[J]. Metabolites, 2022, 12: 394. DOI: 10.3390/metabo12050394
|
[52] |
Li ZY, Zhou JJ, Luo CL, et al. Activation of TGR5 alleviates inflammation in rheumatoid arthritis peripheral blood mononuclear cells and in mice with collagen Ⅱinduced arthritis[J]. Mol Med Rep, 2019, 20: 4540-4550.
|
[53] |
He J, Chan T, Hong X, et al. Microbiome and Metabolome Analyses Reveal the Disruption of Lipid Metabolism in Systemic Lupus Erythematosus[J]. Front Immunol, 2020, 11: 1703. DOI: 10.3389/fimmu.2020.01703
|
[54] |
Lian F, Wang Y, Chen J, et al. Activation of farnesoid X receptor attenuates liver injury in systemic lupus erythema-tosus[J]. Rheumatol Int, 2012, 32: 1705-1710. DOI: 10.1007/s00296-011-1874-2
|
[55] |
Gadaleta RM, Garcia-Irigoyen O, Cariello M, et al. Fibroblast Growth Factor 19 modulates intestinal microbiota and inflammation in presence of Farnesoid X Receptor[J]. EBioMedicine, 2020, 54: 102719. DOI: 10.1016/j.ebiom.2020.102719
|