WANG Hao, MENG Xiangfeng, HAO Ye, LI Jiage, LI Jingli. Interpretation on the Standard Artificial Intelligence Medical Device-Quality Requirements and Evaluation-Part 2: General Requirements for Datasets[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1180-1184. DOI: 10.12290/xhyxzz.2023-0464
Citation: WANG Hao, MENG Xiangfeng, HAO Ye, LI Jiage, LI Jingli. Interpretation on the Standard Artificial Intelligence Medical Device-Quality Requirements and Evaluation-Part 2: General Requirements for Datasets[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1180-1184. DOI: 10.12290/xhyxzz.2023-0464

Interpretation on the Standard Artificial Intelligence Medical Device-Quality Requirements and Evaluation-Part 2: General Requirements for Datasets

Funds: 

Key Technology Fund of National Institutes for Food and Drug Control GJJS-2022-3-1

More Information
  • Corresponding author:

    LI Jingli, E-mail: lijli@nifdc.org.cn

  • Received Date: October 06, 2023
  • Accepted Date: November 12, 2023
  • Issue Publish Date: November 29, 2023
  • Datasets, as an important resource for artificial intelligence medical device industry, have been placed under medical device supervision. National Medical Products Administration (NMPA) has published a sectoral standard named YY/T 1833.2-2022 Artificial Intelligence Medical Device-Quality Requirements and Evaluation-Part 2: General Requirement for Datasets to guide dataset quality evaluation. This standard describes dataset requirements for documentation and quality measures, proposes evaluation methods, and helps dataset producers enhance quality control from the source. It would benefit clinical agencies in dataset construction and better meet industry need. This article introduces the background and key points of the standard, in order to better guide the applications in artificial intelligence medical device industry.
  • [1]
    Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine[J]. Nat Med, 2022, 28: 31-38. DOI: 10.1038/s41591-021-01614-0
    [2]
    Bartels R, Dudink J, Haitjema S, et al. A Perspective on a Quality Management System for AI/ML-Based Clinical Decision Support in Hospital Care[J]. Front Digit Health, 2022, 4: 942588. DOI: 10.3389/fdgth.2022.942588
    [3]
    周志华. 机器学习[M]. 北京: 清华大学出版社, 2016.
    [4]
    国家药品监督管理局医疗器械技术审评中心. 人工智能医疗器械注册审查指导原则[EB/OL]. (2022-03-09)[2023-10-10]. https://www.cmde.org.cn//xwdt/shpgzgg/gztg/20220309090800158.html.
    [5]
    US Food and Drug Administration. Good Machine Learning Practice for Medical Device Development: Guiding Principles[EB/OL]. (2021-10)[2023-10-07]. https://www.fda.gov/media/153486/download.
    [6]
    IEEE Standards Association. IEEE Recommended Practice for the Quality Management of Datasets for Medical Artificial Intelligence[S]. IEEE 2801-2022. Piscataway, New Jercy, US, 2022.
    [7]
    国家药品监督管理局. YY/T 1833.2-2022人工智能医疗器械 质量要求和评价 第2部分: 数据集通用要求[S]. 北京: 中国标准出版社, 2022.
    [8]
    Gualo F, Rodríguez M, Verdugo J, et al. Data quality certification using ISO/IEC 25012: Industrial experiences[J]. J Syst Software, 2021. doi: 10.1016/j.jss.2021.110938.
    [9]
    潘岳松. 临床研究的数据管理与质量控制[J]. 协和医学杂志, 2018, 9: 458-462. DOI: 10.3969/j.issn.1674-9081.2018.05.016
    [10]
    Inau ET, Sack J, Waltemath D, et al. Initiatives, Concepts, and Implementation Practices of FAIR (Findable, Accessi-ble, Interoperable, and Reusable) Data Principles in Health Data Stewardship Practice: Protocol for a Scoping Review[J]. JMIR Res Protoc, 2021, 10: e22505. DOI: 10.2196/22505
    [11]
    王浩, 孟祥峰, 王权, 等. 人工智能医疗器械用数据集管理与评价方法研究[J]. 中国医疗设备, 2018, 33: 1-5. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX201812001.htm
    [12]
    李雪迎, 沙若琪, 姚晨, 等. 利用医院电子病历数据开展临床研究的信息安全策略[J]. 中国食品药品监管, 2020(11): 48-55. https://www.cnki.com.cn/Article/CJFDTOTAL-YPJD202011008.htm
    [13]
    李珂璇, 孙振, 邱辉忠, 等. 北京协和医院结肠癌专病数据库的建立: 单中心数据库经验[J]. 协和医学杂志, 2023, 14: 566-574. DOI: 10.12290/xhyxzz.2022-0538
    [14]
    中华医学会放射学分会, 中国食品药品检定研究院, 国家卫生健康委能力建设与继续教育中心, 等. 胸部CT肺结节数据集构建及质量控制专家共识[J]. 中华放射学杂志, 2021, 55: 104-110.
    [15]
    中华医学会放射学分会乳腺学组. 乳腺X线数据库构建及质量控制专家共识[J]. 中华放射学杂志, 2022, 56: 959-966.
    [16]
    于伟泓, 张潇, 吴婵, 等. 糖尿病视网膜病变眼底彩照人工智能研究标准数据库的建立规范[J]. 协和医学杂志, 2021, 12: 684-688. DOI: 10.12290/xhyxzz.2021-0613
    [17]
    张丽鑫, 钱庆, 唐明坤, 等. 人工智能医疗器械标准数据集构建现状[J]. 中华医学图书情报杂志, 2021, 30: 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YXTS202108001.htm
    [18]
    冯晓彬, 黎成权, 杨爱平, 等. 《肝胆疾病标准数据规范》系列解读[J]. 中华消化外科杂志, 2021, 20: 29-34.
    [19]
    马兆毅, 蒋薇, 宋超, 等. 肺部病变多模态影像和乳腺癌X线医学人工智能标准数据集研究[J]. 科技成果管理与研究, 2023, 18: 89-91.
    [20]
    谷晓芳, 王颖, 马兆毅, 等. 乳腺X射线摄影图像测评数据库相关要求的探讨[J]. 中国医疗设备, 2021, 36: 25-28. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202112006.htm
    [21]
    杨雨佳, 华扬, 马兆毅, 等. 多中心无心脑血管疾病危险因素成年受检者颈动脉内-中膜厚度的相关因素分析[J]. 中国脑血管病杂志, 2023, 20: 537-543. https://www.cnki.com.cn/Article/CJFDTOTAL-NXGB202308005.htm
    [22]
    孟祥峰, 王浩, 张超, 等. 医学人工智能产品检测平台的设计[J]. 医疗卫生装备, 2023, 44: 1-7. https://www.cnki.com.cn/Article/CJFDTOTAL-YNWS202301016.htm
  • Related Articles

    [1]HAO Ye, WANG Hao, LI Jiage. Interpretation On Sectoral Standard Artificial Intelligence Medical Device-Quality Requirements and Evaluation-Part 3: General Requirements for Data Annotation[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1185-1188. DOI: 10.12290/xhyxzz.2023-0463
    [2]MENG Xiangfeng, WANG Hao, LI Jiage. Interpretation on the Standard Artificial Intelligence Medical Device- Quality Requirements and Evaluation-Part 1: Terminology[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1175-1179. DOI: 10.12290/xhyxzz.2023-0351
    [3]ZHENG Xinya, HUANG Yunyou, ZHANG Yiting, WENG Shengjie, ZHAN Jianfeng, ZHAGN Zhifei. Medical Artificial Intelligence Standard System: History and Current Status[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1135-1141. DOI: 10.12290/xhyxzz.2023-0428
    [4]Zhejiang University, National Institutes for Food and Drug Control, Shanghai Changzheng Hospital. Expert Consensus on General Methods for Performance Evaluation of Artificial Intelligence Medical Devices (2023)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 494-503. DOI: 10.12290/xhyxzz.2023-0137
    [5]LI Yang, DU Leilei, XU Fei, LI Yixuan, QIAO En. Big Data and Artificial Intelligence in Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 184-189. DOI: 10.12290/xhyxzz.2022-0182
    [6]ZHANG Zhifei, YANG Zhengxin, HUANG Yunyou, ZHAN Jianfeng. Big Medical Data and Medical AI Standards: Status Quo, Opportunities and Challenges[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 614-620. DOI: 10.12290/xhyxzz.2021-0472
    [7]SHI Zhenwei, LIU Zaiyi. Attaching Importance to the Standardized Construction of Artificial Intelligence Database of Medical Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 599-601. DOI: 10.12290/xhyxzz.2021-0507
    [8]CHEN Yao-long, LUO Xu-fei, SHI Qian-ling, LYU Meng, ZHOU Qi, WANG Jian-jian, YANG Nan, GAO Dong-ping, YANG Shu, SHANG Hong-cai, YANG Ke-hu. How Will Artificial Intelligence Lead the Future of Clinical Practice Guidelines[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 114-121. DOI: 10.12290/xhyxzz.2021-0012
    [9]Hui-zhen JIANG, Lian MA, Wei-guo ZHU. Medical Big Data "Deception" and Strategies[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 542-546. DOI: 10.3969/j.issn.1674-9081.2020.05.009
    [10]Yue-song PAN. Data Management and Quality Control for Clinical Research[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 458-462. DOI: 10.3969/j.issn.1674-9081.2018.05.016

Catalog

    Article Metrics

    Article views (471) PDF downloads (77) Cited by()
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close