Citation: | Zhejiang University, National Institutes for Food and Drug Control, Shanghai Changzheng Hospital. Expert Consensus on General Methods for Performance Evaluation of Artificial Intelligence Medical Devices (2023)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 494-503. DOI: 10.12290/xhyxzz.2023-0137 |
[1] |
Chen T, Liu X, Feng R, et al. Discriminative cervical lesion detection in colposcopic images with global class activation and local bin excitation[J]. IEEE J Biomed Health Inform, 2022, 26: 1411-1421. DOI: 10.1109/JBHI.2021.3100367
|
[2] |
Lin Z, Guo R, Wang Y, et al. A framework for identifying diabetic retinopathy based on anti-noise detection and attention-based fusion[C]. International Conference on Medical Image Computing and Computer-Assisted Interven-tion. Springer, Cham, 2018: 74-82.
|
[3] |
Chen J, Yu B, Lei B, et al. Doctor imitator: A graph-based bone age assessment framework using hand radiographs[C]. International Conference on Medical Image Comput-ing and Computer-Assisted Intervention. Springer, Cham, 2020: 764-774.
|
[4] |
International Electrotechnical Commission. PWI 62-3 ED1: Artificial Intelligence/Machine Learning-enabled Medical Device-Performance Evaluation Process[EB/OL]. [2023-03-18]. https://www.iec.ch/ords/f?p=103:38:402197631962789::::FSP_ORG_ID,FSP_APEX_PAGE,FSP_PROJECT_ID:1245,23,107066.
|
[5] |
International Electrotechnical Commission. PNW 62-411 ED1: Testing of Artificial Intelligence/Machine Learning-enabled Medical Devices[EB/OL]. [2023-03-18]. https://www.iec.ch/ords/f?p=103:38:402197631962789::::FSP_ORG_ID,FSP_APEX_PAGE,FSP_PROJECT_ID:1245,23,109273.
|
[6] |
国家药品监督管理局. 人工智能医疗器械质量要求和评价第1部分: 术语YY/T 1833.1-2022[S]. 北京: 中国标准出版社. 2022.
|
[7] |
国家药品监督管理局. 人工智能医疗器械质量要求和评价第2部分: 数据集通用要求YY/T 1833.2-2022[S]. 北京: 中国标准出版社. 2022.
|
[8] |
国家药品监督管理局. 人工智能医疗器械质量要求和评价第3部分: 数据标注通用要求YY/T 1833.3-2022[S]. 北京: 中国标准出版社. 2022.
|
[9] |
国家药品监督管理局. 人工智能医疗器械肺部影像辅助分析软件算法性能测试方法YY/T 1858-2022[S]. 北京: 中国标准出版社. 2022.
|
[10] |
Huang X, Kwiatkowska M, Wang S, et al. Safety verification of deep neural networks[C]. Computer Aided Verification: 29th International Conference, CAV 2017, Heidelberg, Germany, July 24—28, 2017, Proceedings, Part Ⅰ 30. Springer International Publishing, 2017: 3-29.
|
[11] |
Montano JJ, Palmer A. Numeric sensitivity analysis applied to feedforward neural networks[J]. Neural Comput Appl, 2003, 12: 119-125. DOI: 10.1007/s00521-003-0377-9
|
[12] |
Bunel RR, Turkaslan I, Torr P, et al. A unified view of piecewise linear neural network verification[J/OL]. [2023-03-18]. https://arxiv.org/abs/1711.00455v2.
|
[13] |
Tang S, Gong R, Wang Y, et al. Robustart: Bench-marking robustness on architecture design and training techniques[J/OL]. [2023-03-18]. https://arxiv.org/abs/2109.05211.
|
[14] |
Tian Y, Pei K, Jana S, et al. Deeptest: Automated testing of deep-neural-network-driven autonomous cars[C]. Proceedings of the 40th international conference on software engineering, 2018: 303-314.
|
[15] |
Singh G, Gehr T, Püschel M, et al. An abstract domain for certifying neural networks[EB/OL]. [2023-03-18]. https://www.sri.inf.ethz.ch/publications/singh2019domain.
|
[16] |
Wang L, Wang H, Xia C, et al. Toward standardized premarket evaluation of computer aided diagnosis/detection products: insights from FDA-approved products[J]. Expert Rev Med Devices, 2020, 17: 899-918. DOI: 10.1080/17434440.2020.1813566
|
[17] |
中华医学会放射学分会, 中国食品药品检定研究院, 国家卫生健康委能力建设与继续教育中心, 等. 胸部CT肺结节数据集构建及质量控制专家共识[J]. 中华放射学杂志, 2021, 55: 104-110.
|
[18] |
陈耀龙, 罗旭飞. 临床实践指南的制订方法与步骤[J]. 中华传染病杂志, 2019, 37: 523-526. DOI: 10.3760/cma.j.issn.1000-6680.2019.09.003
|
[19] |
陈耀龙, 罗旭飞, 王吉耀, 等. 如何区分临床实践指南与专家共识[J]. 协和医学杂志, 2019, 10: 403-408. DOI: 10.3969/j.issn.1674-9081.2019.04.018
|
[20] |
北京协和医院罕见病多学科协作组, 中国罕见病联盟. 氯巴占治疗难治性癫痫专家共识(2022)[J]. 协和医学杂志, 2022, 13: 768-782. DOI: 10.12290/xhyxzz.2022-0421
|
[21] |
BS PD ISO/IEC TR 29119-11: 2020, Software and systems engineering: Software testing— Part 11: Guidelines on the testing of AI-based systems[EB/OL]. [2023-03-18]. https://www.iso.org/obp/ui/#iso:std:iso-iec:tr:29119:-11:ed-1:v1:en.
|
[22] |
Wang L, Wang H, Xia C, et al. Toward standardized premarket evaluation of computer aided diagnosis/detection products: insights from FDA-approved products[J]. Expert Rev Med Devices, 2020, 17: 899-918. DOI: 10.1080/17434440.2020.1813566
|
[23] |
Wang H, Meng X, Zhang C, et al. Performance Assess-ment of Artificial Intelligence Medical Device Software Using Synthetic Data[C]. 2021 IEEE International Conference on Real-time Computing and Robotics (RCAR), 2021: 444-448.
|
[24] |
Hess DE, Roddy RF, Faller W. Uncertainty analysis applied to feedforward neural networks[J]. Ship Technol Res, 2007, 54: 114-124. DOI: 10.1179/str.2007.54.3.003
|
[25] |
Choi JY, Choi CH. Sensitivity analysis of multilayer perceptron with differentiable activation functions[J]. IEEE Trans Neural Netw, 1992, 3: 101-107. DOI: 10.1109/72.105422
|
[26] |
IEEE. IEEE Recommended Practice for the Quality Management of Datasets for Medical Artificial Intelligence[J]. IEEE, 2022. doi: 10.1109/IEEESTD.2022.9812564.
|