CHEN Yao-long, LUO Xu-fei, SHI Qian-ling, LYU Meng, ZHOU Qi, WANG Jian-jian, YANG Nan, GAO Dong-ping, YANG Shu, SHANG Hong-cai, YANG Ke-hu. How Will Artificial Intelligence Lead the Future of Clinical Practice Guidelines[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 114-121. DOI: 10.12290/xhyxzz.2021-0012
Citation: CHEN Yao-long, LUO Xu-fei, SHI Qian-ling, LYU Meng, ZHOU Qi, WANG Jian-jian, YANG Nan, GAO Dong-ping, YANG Shu, SHANG Hong-cai, YANG Ke-hu. How Will Artificial Intelligence Lead the Future of Clinical Practice Guidelines[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 114-121. DOI: 10.12290/xhyxzz.2021-0012

How Will Artificial Intelligence Lead the Future of Clinical Practice Guidelines

Funds: 

The National Key R&D Program of China 2018YFC1705500

More Information
  • Corresponding author:

    CHEN Yao-long Tel:86-931-8912639, E-mail: chenyaolong@vip.163.com

  • Received Date: January 04, 2021
  • Accepted Date: January 16, 2021
  • Issue Publish Date: January 29, 2021
  • In the past decades, with the rapid development and progress of artificial intelligence (AI), its impact on the field of medicine is deepening. The AI guideline released by the Ministry of Science and Technology of the People's Republic of China also suggested increasing support for the application of AI in medicine. As an important guiding document in medical practice, clinical practice guidelines are of great significance and value in regulating the behavior of healthcare professionals and bridging the gap between the best evidence of research and current practice. How to use AI to accelerate the development process, improve efficiency, innovate the format of dissemination and implementation, and even lead the future of clinical practice guidelines has received more attention from researchers all over the world. This paper analyzed and discussed the current situation and prospects of AI in clinical practice guidelines. We also proposed ideas and suggestions on how to promote the integration of AI and guidelines.
  • [1]
    He JX, Baxter SL, Xu J, et al. The practical imple-mentation of artificial intelligence technologies in medicine[J]. Nat Med, 2019, 25: 30-36. DOI: 10.1038/s41591-018-0307-0
    [2]
    Oliveira T, Novais P, Neves J. Development and implementation of clinical guidelines: An artificial intelligence perspective[J]. Artif Intell Rev, 2014, 42: 999-1027. DOI: 10.1007/s10462-013-9402-2
    [3]
    Isern D, Moreno A. Computer-based execution of clinical guidelines: a review[J]. Int J Med Inform, 2008, 77: 787-808. DOI: 10.1016/j.ijmedinf.2008.05.010
    [4]
    Luo XF, Xiao YJ, Liu X, et al. How to Combine Artificial Intelligence with Clinical Practice Guideline: A Scoping Review[C/OL].(2019-10-31). https://journals.lww.com/ijebh/fulltext/2019/12000/abstracts_for_the_gin_and_jbi_conference,_adelaide.2.aspx.
    [5]
    Benjamens S, Dhunnoo P, Meskó B. The state of artificial intelligence-based FDA-approved medical devices and algorithms: an online database[J]. NPJ Digit Med, 2020, 3: 118. DOI: 10.1038/s41746-020-00324-0
    [6]
    李博, 李科, 曾东, 等.基于语义关系的高血压临床指南知识库构建[J].中国数字医学, 2013: 64-67.

    Li B, Li K, Zeng D, et al.Construction of Hypertension Clinical Guideline Knowledge Base Based on Semantic[J].Zhongguo Shu Zi Yi Xue, 2013: 64-67.
    [7]
    蒲晓蓉, 陈柯成, 刘军池, 等. COVID-19中国诊疗方案的机器学习智能分析方法[J].生物医学工程学杂志, 2020, 37:365-372.

    Pu XR, Chen KC, Liu JC, et al. Machine learning-based method for interpreting the guidelines of the diagnosis and treatment of COVID-19[J].Sheng Wu Yi Xue Gong Cheng Xue Za Zhi, 2020, 37:365-372.
    [8]
    Chen XL, Chen J, Cheng G, et al. Topics and trends in artificial intelligence assisted human brain research[J]. PLoS One, 2020, 15: e0231192. DOI: 10.1371/journal.pone.0231192
    [9]
    Ertle AR, Campbell EM, Hersh WR. Automated application of clinical practice guidelines for asthma management[J]. Proc AMIA Annu Fall Symp, 1996:552-556.
    [10]
    Ohno-Machado L, Gennari JH, Murphy SN, et al. The guideline interchange format: a model for representing guidelines[J]. J Am Med Inform Assoc, 1998, 5: 357-372. DOI: 10.1136/jamia.1998.0050357
    [11]
    Dubey AK, Chueh H. Using the extensible markup language (XML) in automated clinical practice guidelines[J]. Proc AMIA Symp, 1998:735-739.
    [12]
    Mani S, Shankle WR, Dick MB, et al. Two-stage machine learning model for guideline development[J]. Artif Intell Med, 1999, 16: 51-71. DOI: 10.1016/S0933-3657(98)00064-5
    [13]
    Shiffman RN, Karras BT, Agrawal A, et al. GEM: a pro-posal for a more comprehensive guideline document model using XML[J]. J Am Med Inform Assoc, 2000, 7: 488-498. DOI: 10.1136/jamia.2000.0070488
    [14]
    Metfessel BA. An automated tool for an analysis of compli-ance to evidence-based clinical guidelines[J]. Stud Health Technol Inform, 2001, 84: 226-230.
    [15]
    Shahar Y, Young O, Shalom E, et al. The Digital electronic Guideline Library (DeGeL): a hybrid framework for representation and use of clinical guidelines[J]. Stud Health Technol Inform, 2004, 101: 147-151.
    [16]
    Kaiser K, Akkaya C, Miksch S. How can information extraction ease formalizing treatment processes in clinical practice guidelines? A method and its evaluation[J]. Artif Intell Med, 2007, 39: 151-163. DOI: 10.1016/j.artmed.2006.07.011
    [17]
    Terenziani P, Montani S, Bottrighi A, et al. Applying artificial intelligence to clinical guidelines: the GLARE approach[J]. Stud Health Technol Inform, 2008, 139: 273-282.
    [18]
    Bui DD, Jonnalagadda S, Del Fiol G. Automatically finding relevant citations for clinical guideline development[J]. J Biomed Inform, 2015, 57: 436-445. DOI: 10.1016/j.jbi.2015.09.003
    [19]
    Beller E, Clark J, Tsafnat G, et al. Making progress with the automation of systematic reviews: principles of the International Collaboration for the Automation of Systematic Reviews (ICASR)[J]. Syst Rev, 2018, 7: 77. DOI: 10.1186/s13643-018-0740-7
    [20]
    Bowles J, Caminati MB, Cha S, et al. A framework for automated conflict detection and resolution in medical guidelines[J]. Sci Comput Program, 2019, 182:42-63. DOI: 10.1016/j.scico.2019.07.002
    [21]
    Graham SS, Majdik ZP, Clark D, et al. Relationships among commercial practices and author conflicts of interest in biomedical publishing[J]. PLoS One, 2020, 15: e0236166. DOI: 10.1371/journal.pone.0236166
    [22]
    Clark J, Glasziou P, Del Mar C, et al. A full systematic review was completed in 2 weeks using automation tools: a case study[J]. J Clin Epidemiol, 2020, 121: 81-90. DOI: 10.1016/j.jclinepi.2020.01.008
    [23]
    Marshall IJ, Wallace BC. Toward systematic review automation: a practical guide to using machine learning tools in research synthesis[J]. Syst Rev, 2019, 8: 163. DOI: 10.1186/s13643-019-1074-9
    [24]
    Marshall C, Brereton P. Systematic review toolbox: a catalogue of tools to support systematic reviews[C/OL].(2015-05-08).https://www.researchgate.net/publication/275967185_Syste-matic_Review_Toolbox_A_Catalogue_of_Tools_to_Support_Systematic_Reviews.
    [25]
    Akl EA, Meerpohl JJ, Elliott J, et al. Living Systematic Review Network. Living systematic reviews: 4. Living guideline recommendations[J]. J Clin Epidemiol, 2017, 91:47-53. DOI: 10.1016/j.jclinepi.2017.08.009
    [26]
    Else H. How a torrent of COVID science changed research publishing-in seven charts[J]. Nature, 2020, 588: 553. DOI: 10.1038/d41586-020-03564-y
    [27]
    Groot P, Hommersom A, Lucas P. Adaptation of clinical practice guidelines[J].Stud Health Technol Inform, 2008, 139:121-139.
    [28]
    Gagliardi AR, Marshall C, Huckson S, et al. Developing a checklist for guideline implementation planning: review and synthesis of guideline development and implementation advice[J]. Implement Sci, 2015, 10:19. DOI: 10.1186/s13012-015-0205-5
    [29]
    Landis Lewis Z, Mello-Thoms C, Gadabu OJ, et al. The feasibility of automating audit and feedback for ART guideline adherence in Malawi[J]. J Am Med Inform Assoc, 2011, 18: 868-874. DOI: 10.1136/amiajnl-2011-000097
    [30]
    Wahl B, Cossy-Gantner A, Germann S, et al.Artificial intelligence (AI) and global health: how can AI contribute to health in resource-poor settings?[J]. BMJ Glob Health, 2018, 3:e000798. DOI: 10.1136/bmjgh-2018-000798
    [31]
    Shrank WH, Rogstad TL, Parekh N. Waste in the US Health Care System: Estimated Costs and Potential for Savings[J]. JAMA, 2019, 322:1501-1509. DOI: 10.1001/jama.2019.13978
    [32]
    Marshall IJ, Kuiper J, Wallace BC. RobotReviewer: evaluation of a system for automatically assessing bias in clinical trials[J]. J Am Med Inform Assoc, 2016, 23: 193-201. DOI: 10.1093/jamia/ocv044
    [33]
    Brouwers MC, Kho ME, Browman GP, et al. AGREE Ⅱ: advancing guideline development, reporting and evaluation in health care[J]. CMAJ, 2010, 182: E839-E842. DOI: 10.1503/cmaj.090449
    [34]
    Chen YL, Yang KH, Marušic A, et al. A reporting tool for practice guidelines in health care: the RIGHT statement[J]. Ann Intern Med, 2017, 166: 128-132. DOI: 10.7326/M16-1565
    [35]
    Tokalić R, Viđak M, Buljan I, et al. Reporting of Clinical Practice Guidelines: Practical Testing of AGREE and RIGHT Checklists[J]. J Gen Intern Med, 2020, 35:2167-2172. DOI: 10.1007/s11606-020-05819-w
    [36]
    Hussain M, Hussain J, Sadiq M, et al. Recommendation statements identification in clinical practice guidelines using heuristic patterns[C/OL].(2018-07-27).https://www.computer.org/csdl/proceedings-article/snpd/2018/08441036/13bd1sv5NyA.
    [37]
    Schünemann HJ, Wiercioch W, Etxeandia I, et al. Guidelines 2.0: systematic development of a comprehensive checklist for a successful guideline enterprise[J]. CMAJ, 2014, 186: E123-E142. DOI: 10.1503/cmaj.131237
    [38]
    National Institute for Health and Care Excellence. Develop-ing NICE guidelines: the manual[M/OL].(2020-10-15). https://www.nice.org.uk/process/pmg20/chapter/introduction.
    [39]
    Manning CL. Artificial intelligence could bring relevant guide-lines into every consultation[J]. BMJ, 2019, 366: l4788.
    [40]
    Liu XX, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension[J]. BMJ, 2020, 370:m3164.
  • Related Articles

    [1]CHEN Hongda, CHEN Wanqing. Evaluation of Cancer Burden Based on Big Data: Applications and Challenges in Cancer Prevention and Treatment[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 506-512. DOI: 10.12290/xhyxzz.2025-0083
    [2]ZHANG Zijiao, DING Shunjing, ZHAO Di, LIANG Jun, LEI Jianbo. Clinical Prediction Models Based on Traditional Methods and Machine Learning for Predicting First Stroke: Status and Prospects[J]. Medical Journal of Peking Union Medical College Hospital, 2025, 16(2): 292-299. DOI: 10.12290/xhyxzz.2024-1116
    [3]GONG Huanhuan, KE Xiaowei, WANG Aimin, LI Xiangmin. An Interpretable Machine Learning Model for Predicting In-hospital Death Risk in Patients with Cardiac Arrest: Based on US Medical Information Mart for Intensive Care Database Ⅳ 2.0[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 528-535. DOI: 10.12290/xhyxzz.2022-0733
    [4]LI Yang, DU Leilei, XU Fei, LI Yixuan, QIAO En. Big Data and Artificial Intelligence in Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 184-189. DOI: 10.12290/xhyxzz.2022-0182
    [5]FAN Meiyu. Research on High Quality Evidence Acquisition and Application of Evidence-based Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 39-43. DOI: 10.12290/xhyxzz.2022-0202
    [6]ZHENG Hua, ZHANG Meng, ZHAO Ze, LIN Jianfeng, GUO Xiuzhi, XIA Peng, REN Fei, QIU Ling, ZHOU Jiong, CHEN Limeng. Establishing AKI Warning System in Peking Union Medical College Hospital from a Machine Learning Approach: A Single-center Research Protocol[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 913-921. DOI: 10.12290/xhyxzz.2021-0519
    [7]ZHANG Zhifei, YANG Zhengxin, HUANG Yunyou, ZHAN Jianfeng. Big Medical Data and Medical AI Standards: Status Quo, Opportunities and Challenges[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 614-620. DOI: 10.12290/xhyxzz.2021-0472
    [8]LI Xirong. Multi-modal Deep Learning and Its Applications in Ophthalmic Artificial Intelligence[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 602-607. DOI: 10.12290/xhyxzz.2021-0500
    [9]Hui-zhen JIANG, Lian MA, Wei-guo ZHU. Medical Big Data "Deception" and Strategies[J]. Medical Journal of Peking Union Medical College Hospital, 2020, 11(5): 542-546. DOI: 10.3969/j.issn.1674-9081.2020.05.009
    [10]Hong-wei WEN, Jing-jing LU, Hui-guang HE. Application of Machine Learning in Diagnosis and Prediction of Neuropsychiatric Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 19-24. DOI: 10.3969/j.issn.1674-9081.2018.01.005
  • Cited by

    Periodical cited type(8)

    1. 郭玉杰,张雪芹,孙文宇,邓宏勇. 自动化文献筛选工具在系统评价中的应用. 协和医学杂志. 2024(04): 921-926 . 本站查看
    2. 罗旭飞,吕晗,宋再伟,刘辉,王郅翔,李昊东,王晔,朱迪,张璐,陈耀龙. 生成式人工智能对临床实践指南制订、评价和应用的影响. 协和医学杂志. 2024(05): 1173-1181 . 本站查看
    3. 刘璐,彭婷婷,邓珣,张山. 基于知识图谱的实施科学三种类型研究设计的研究热点与趋势. 医学信息. 2024(20): 28-33 .
    4. 范美玉. 高质量循证医学证据获取与应用研究. 协和医学杂志. 2023(01): 39-43 . 本站查看
    5. 陈耀龙,杨克虎,王小钦,康德英,詹思延,王吉耀,刘晓清. 中国制订/修订临床诊疗指南的指导原则(2022版). 中华医学杂志. 2022(10): 697-703 .
    6. 李逸雯,罗斌玉,崔京,朱梦梦,刘玥,徐浩,史大卓,陈可冀. 病证结合与冠心病防治策略. 中国科学:生命科学. 2022(06): 797-811 .
    7. 余丽娜,任相颖,任相阁,王永博,李绪辉,黄桥,张蓉,王婷,靳英辉. 临床实践指南制定的自动化、智能化工具研究进展. 中国循证心血管医学杂志. 2022(10): 1178-1184 .
    8. 李绪辉,黄桥,王永博,阎思宇,陈沐坤,高旷,司宜蓓,郭静,胡文斌,靳英辉. 临床实践指南实施性促进研究之一:实施性现状与促进策略. 医学新知. 2021(06): 410-418 .

    Other cited types(1)

Catalog

    Article Metrics

    Article views (1686) PDF downloads (223) Cited by(9)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close