Citation: | LI Xirong. Multi-modal Deep Learning and Its Applications in Ophthalmic Artificial Intelligence[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 602-607. DOI: 10.12290/xhyxzz.2021-0500 |
[1] |
Etzioni O, Decario N. AI can help scientists find a COVID-19 vaccine[EB/OL ]. [2021-06-16]. https://www.wired.com/story/opinion-ai-can-help-find-scientists-find-a-covid-19-vaccine.
|
[2] |
Laguarta J, Hueto F, Subirana B. COVID-19 artificial intelligence diagnosis using only cough recordings[J]. IEEE Open J Eng Med Biol, 2020, 1: 275-281. DOI: 10.1109/OJEMB.2020.3026928
|
[3] |
Zeeberg A. D.I.Y. Artificial intelligence comes to a Japanese family farm[EB/OL ]. [2021-06-16]. https://www.newyorker.com/tech/annals-of-technology/diy-artificial-intelligence-comes-to-a-japanese-family-farm.
|
[4] |
Bengio Y. Learning deep architectures for AI[G]. Foundations and Trends® in Machine Learning, 2009, 2: 1-127.
|
[5] |
Schmidhuber J. Deep learning in neural networks: An overview[J]. Neural Netw, 2015, 61: 85-117. http://www.onacademic.com/detail/journal_1000036789998910_729a.html
|
[6] |
Zheng A, Casari A. Feature Engineering for Machine Learning: Principles and Techniques for Data Scientists[M]. New York: O'Reilly Media Inc., 2018.
|
[7] |
Gulshan V, Peng L, Coram M, et al. Development and validation of a deep learning algorithm for detection of diabetic retinopathy in retinal fundus photographs[J]. JAMA, 2016, 316: 2402-2410. DOI: 10.1001/jama.2016.17216
|
[8] |
Burlina PM, Joshi N, Pekala M, et al. Automated grading of age-related macular degeneration from color fundus images using deep convolutional neural networks[J]. JAMA Ophthalmol, 2017, 135: 1170-1176. DOI: 10.1001/jamaophthalmol.2017.3782
|
[9] |
Kermany DS, Goldbaum M, Cai W, et al. Identifying medical diagnoses and treatable diseases by image-based deep learning[J]. Cell, 2018, 172: 1122-1131. e9. DOI: 10.1016/j.cell.2018.02.010
|
[10] |
Wei Q, Li X, Wang H, et al. Laser scar detection in fundus images using convolutional neural network[C]. ACCV, 2018: 191-206.
|
[11] |
Lai X, Li X, Qian R, et al. Four models for automatic recognition of left and right eye in fundus images[C]. MMM, 2019: 507-517.
|
[12] |
Xu C, Zhu X, He W, et al. Fully deep learning for slit-lamp photo based nuclear cataract grading[C]. MICCAI, 2019: 513-521.
|
[13] |
Yang Z, Li X, He X, et al. Joint localization of optic disc and fovea in ultra-widefield fundus images[C]. MLMI, 2019: 453-460.
|
[14] |
Wu J, Zhang Y, Wang J, et al. AttenNet: Deep attention based retinal disease classification in OCT images[C]. MMM, 2020: 565-576.
|
[15] |
Ding F, Yang G, Wu J, et al. High-order attention networks for medical image segmentation[C]. MICCAI, 2020: 253-262.
|
[16] |
Ding F, Yang G, Ding D, et al. Retinal nerve fiber layer defect detection with position guidance[C]. MICCAI, 2020: 745-754.
|
[17] |
Wei Q, Li X, Yu W, et al. Learn to segment retinal lesions and beyond[C]. ICPR, 2020: 7403-7410.
|
[18] |
Li X, Wan W, Y. Zhou, et al. Deep multiple instance learning with spatial attention for ROP case classification, instance selection and abnormality localization[C]. ICPR, 2020: 7293-7298.
|
[19] |
Li B, Chen H, Zhang B, et al. Development and evaluation of a deep learning model for the detection of multiple fundus diseases based on colour fundus photography[J]. Br J Ophthalmol, 2021. doi: 10.1136/bjophthalmol-2020-316290.
|
[20] |
Zhang C, He F, Li B, et al. Development of a deep-learning system for detection of lattice degeneration, retinal breaks, and retinal detachment in tessellated eyes using ultra-wide-field fundus images: A pilot study[J]. Graefes Arch Clin Exp Ophthalmol, 2021, 259: 2225-2234. DOI: 10.1007/s00417-021-05105-3
|
[21] |
Zhang C, Yang Z, He X, et al. Multimodal intelligence: Representation learning, information fusion, and applications[J]. IEEE J Sel Top Signal Process, 2020, 14: 478-493. DOI: 10.1109/JSTSP.2020.2987728
|
[22] |
Baltrušaitis T, Ahuja C, Morency LP. Multimodal machine learning: A survey and taxonomy[J]. IEEE Trans Pattern Anal Mach Intell, 2018, 41: 423-443. http://arxiv.org/pdf/1705.09406
|
[23] |
Wang J, Tian K, Ding D, et al. Unsupervised domain expansion for visual categorization[J]. ACM Trans Multimedia Comput Commun Appl, 2021. https://arxiv.org/abs/2104.00233.
|
[24] |
Li X, Jia M, Islam M T, et al. Self-supervised feature learning via exploiting multi-modal data for retinal disease diag-nosis[J]. IEEE Trans Med Imaging, 2020, 39: 4023-4033. DOI: 10.1109/TMI.2020.3008871
|
[25] |
Wang W, Xu Z, Yu W, et al. Two-stream CNN with loose pair training for multi-modal AMD categorization[C]. MICCAI, 2019: 156-164.
|
[26] |
Chen RJ, Lu MY, Wang J, et al. Pathomic fusion: an integrated framework for fusing histopathology and genomic features for cancer diagnosis and prognosis[J]. IEEE Trans Med Imaging, 2020. doi: 10.1109/TMI.2020.3021387.
|
[27] |
Yang J, Yang Z, Mao Z, et al. Bi-modal deep learning for recognizing multiple retinal diseases based on color fundus photos and OCT images[C]. ARVO Annual Meeting, 2021.
|
[28] |
Wang J, Miao J, Yang X, et al. Auto-weighting for breast cancer classification in multi- modal ultrasound[C]. MICCAI, 2020: 190-199.
|
[29] |
Zhou T, Fu H, Zhang Y, et al. M2Net: Multi-modal multi-channel network for overall survial time prediction of brain tumor patients[C]. MICCAI, 2020: 221-231.
|
[30] |
Jiang X, Luo Q, Wang Z, et al. Multiphase and multi-level selective feature fusion for automated pancreas segment from CT images[C]. MICCAI, 2020: 460-469.
|
[31] |
Peng Y, Bi L, Fulham M, et al. Multi-modality information fusion for radiomics-based neural architecture search[C]. MICCAI, 2020: 763-771.
|
[32] |
Wang W, Xu Z, Yu W, et al. Two-stream CNN with loose pair training for multi-modal AMD categorization[C]. MICCAI, 2019: 156-164.
|
[33] |
Xu Z, Wang W, Yang J, et al. Automated diagnoses of age-related macular degeneration and polypoidal choroidal vasculopathy using bi-modal deep convolutional neural networks[J]. Br J Ophthalmol, 2021, 105: 561-566. DOI: 10.1136/bjophthalmol-2020-315817
|
[34] |
Zhu J, Park T, Isola P, et al. Unpaired image-to-image translation using cycle-consistent adversarial networks[C]. ICCV, 2017: 2223-2232.
|
[35] |
Li X, Zhou Y, Wang J, et al. Multi-modal multi-instance learning for retinal disease recognition[C]. ACMMM, 2021. doi: 10.1145/3474085.3475418.
|
[1] | FU Yifan, WENG Guihu, CAO Zhe, ZHANG Taiping. Application of Artificial Intelligence in the Diagnosis and Treatment of Pancreatic Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 747-750. DOI: 10.12290/xhyxzz.2024-0256 |
[2] | LU Yao, LIU Jianing, WANG Mian, HUANG Jiajie, HAN Baojin, SUN Mingyao, CHENG Qianji, NING Jinling, GE Long. Artificial Intelligence in Shared Decision Making[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 661-667. DOI: 10.12290/xhyxzz.2023-0209 |
[3] | CHEN Youxin, XU Zhiyan. Artificial Intelligence Assisted Therapeutic Regimen and Technology Transformation in Retinal Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1131-1134. DOI: 10.12290/xhyxzz.2023-0247 |
[4] | LIU Shuai, ZHU Huadong. Application of Artificial Intelligence in Cardiopulmonary Resuscitation[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 453-458. DOI: 10.12290/xhyxzz.2022-0711 |
[5] | LI Yang, DU Leilei, XU Fei, LI Yixuan, QIAO En. Big Data and Artificial Intelligence in Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(1): 184-189. DOI: 10.12290/xhyxzz.2022-0182 |
[6] | DI Yu, LI Ying. The Application and Research Progress of Artificial Intelligence in Corneal Related Diseases[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 761-767. DOI: 10.12290/xhyxzz.2020-0098 |
[7] | HAN Xiaowei, LI Ming, ZHANG Bing. Application of Artificial Intelligence in Neuroimaging of Stroke[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 749-754. DOI: 10.12290/xhyxzz.2021-0491 |
[8] | CHEN Yao-long, LUO Xu-fei, SHI Qian-ling, LYU Meng, ZHOU Qi, WANG Jian-jian, YANG Nan, GAO Dong-ping, YANG Shu, SHANG Hong-cai, YANG Ke-hu. How Will Artificial Intelligence Lead the Future of Clinical Practice Guidelines[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 114-121. DOI: 10.12290/xhyxzz.2021-0012 |
[9] | Rui-feng LIU, Yu XIA, Yu-xin JIANG. Application of Artificial Intelligence in Ultrasound Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(5): 453-457. DOI: 10.3969/j.issn.1674-9081.2018.05.015 |
[10] | Zheng-yu JIN. Prospects and Challenges:when Medical Imaging Meets Artificial Intelligence[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(1): 2-4. DOI: 10.3969/j.issn.1674-9081.2018.01.001 |