Volume 14 Issue 3
May  2023
Turn off MathJax
Article Contents
LIU Shuai, ZHU Huadong. Application of Artificial Intelligence in Cardiopulmonary Resuscitation[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 453-458. doi: 10.12290/xhyxzz.2022-0711
Citation: LIU Shuai, ZHU Huadong. Application of Artificial Intelligence in Cardiopulmonary Resuscitation[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 453-458. doi: 10.12290/xhyxzz.2022-0711

Application of Artificial Intelligence in Cardiopulmonary Resuscitation

doi: 10.12290/xhyxzz.2022-0711
Funds:

Scientific and Technological Innovation 2030-New Generation Artificial Intelligence Project 2020AAA0109600

More Information
  • Corresponding author: ZHU Huadong, E-mail: huadongzhu@hotmail.com
  • Received Date: 2022-12-11
  • Accepted Date: 2023-01-29
  • Available Online: 2023-02-16
  • Publish Date: 2023-05-30
  • With the development of artificial intelligence, computer hardware and big data, more and more artificial intelligent devices and algorithm are springing up. Based on the analysis of these data, great achievements has been made by artificial intelligent devices to predict the risk of the cardiac arrest, identify early period of cardiac arrest, instruct the process to improve the quality of cardiopulmonary resuscitation and resuscitation prediction. Meanwhile these tools not only provide new insight for clinical research, but play significant roles in clinical decision making and medical resources distribution. This paper focuses on the application of artificial intelligence in cardiopulmonary resuscitation, in order to provide reference for clinical practice.
  • loading
  • [1] 王敏, 周满红. 输出生理参数反馈指导下的心肺复苏[J]. 中国急救医学, 2020, 40: 768-772. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJJY202008015.htm
    [2] Shah A, Ahirrao S, Pandya S, et al. Smart Cardiac Framework for an Early Detection of Cardiac Arrest Condition and Risk[J]. Front Public Health, 2021, 9: 762303. doi:  10.3389/fpubh.2021.762303
    [3] Sim I. Mobile Devices and Health[J]. N Engl J Med, 2019, 381: 956-968. doi:  10.1056/NEJMra1806949
    [4] Harford S, Darabi H, Del Rios M, et al. A machine learning based model for Out of Hospital cardiac arrest outcome classification and sensitivity analysis[J]. Resuscitation, 2019, 138: 134-140. doi:  10.1016/j.resuscitation.2019.03.012
    [5] Lo YH, Siu YCA. Predicting Survived Events in Nontraumatic Out-of-Hospital Cardiac Arrest: A Comparison Study on Machine Learning and Regression Models[J]. J Emerg Med, 2021, 61: 683-694. doi:  10.1016/j.jemermed.2021.07.058
    [6] Ha ACT, Doumouras BS, Wang CN, et al. Prediction of Sudden Cardiac Arrest in the General Population: Review of Traditional and Emerging Risk Factors[J]. Can J Cardiol, 2022, 38: 465-478. doi:  10.1016/j.cjca.2022.01.007
    [7] Layeghian Javan S, Sepehri MM, Layeghian Javan M, et al. An intelligent warning model for early prediction of cardiac arrest in sepsis patients[J]. Comput Methods Programs Biomed, 2019, 178: 47-58. doi:  10.1016/j.cmpb.2019.06.010
    [8] Li YJ, Ye WY, Yang K, et al. Prediction of cardiac arrest in critically ill patients based on bedside vital signs monitoring[J]. Comput Methods Programs Biomed, 2022, 214: 106568. doi:  10.1016/j.cmpb.2021.106568
    [9] Wu TT, Lin XQ, Mu Y, et al. Machine learning for early prediction of in-hospital cardiac arrest in patients with acute coronary syndromes[J]. Clin Cardiol, 2021, 44: 349-356. doi:  10.1002/clc.23541
    [10] Fernandes M, Mendes R, Vieira SM, et al. Risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing[J]. PLoS One, 2020, 15: e0230876. doi:  10.1371/journal.pone.0230876
    [11] Jang DH, Kim J, Jo YH, et al. Developing neural network models for early detection of cardiac arrest in emergency department[J]. Am J Emerg Med, 2020, 38: 43-49. doi:  10.1016/j.ajem.2019.04.006
    [12] Trayanova NA, Topol EJ. Deep learning a person's risk of sudden cardiac death[J]. Lancet, 2022, 399: 1933. doi:  10.1016/S0140-6736(22)00881-9
    [13] Martinez-Alanis M, Bojorges-Valdez E, Wessel N, et al. Prediction of Sudden Cardiac Death Risk with a Support Vector Machine Based on Heart Rate Variability and Heartprint Indices[J]. Sensors (Basel), 2020, 20: 5483. doi:  10.3390/s20195483
    [14] Lee YJ, Cho KJ, Kwon O, et al. A multicentre validation study of the deep learning-based early warning score for predicting in-hospital cardiac arrest in patients admitted to general wards[J]. Resuscitation, 2021, 163: 78-85. doi:  10.1016/j.resuscitation.2021.04.013
    [15] Kwon JM, Kim KH, Jeon KH, et al. Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography[J]. Scand J Trauma Resusc Emerg Med, 2020, 28: 98. doi:  10.1186/s13049-020-00791-0
    [16] Shashikumar SP, Wardi G, Paul P, et al. Development and Prospective Validation of a Deep Learning Algorithm for Predicting Need for Mechanical Ventilation[J]. Chest, 2021, 159: 2264-2273. doi:  10.1016/j.chest.2020.12.009
    [17] Ueno R, Xu L, Uegami W, et al. Value of laboratory results in addition to vital signs in a machine learning algorithm to predict in-hospital cardiac arrest: A single-center retrospective cohort study[J]. PLoS One, 2020, 15: e0235835. doi:  10.1371/journal.pone.0235835
    [18] Park JH, Choi J, Lee S, et al. Use of Time-to-Event Analysis to Develop On-Scene Return of Spontaneous Circulation Prediction for Out-of-Hospital Cardiac Arrest Patients[J]. Ann Emerg Med, 2022, 79: 132-144. doi:  10.1016/j.annemergmed.2021.07.121
    [19] Blomberg SN, Folke F, Ersbøll AK, et al. Machine learning as a supportive tool to recognize cardiac arrest in emergency calls[J]. Resuscitation, 2019, 138: 322-329. doi:  10.1016/j.resuscitation.2019.01.015
    [20] Byrsell F, Claesson A, Ringh M, et al. Machine learning can support dispatchers to better and faster recognize out-of-hospital cardiac arrest during emergency calls: A retrospective study[J]. Resuscitation, 2021, 162: 218-226. doi:  10.1016/j.resuscitation.2021.02.041
    [21] Blomberg SN, Christensen HC, Lippert F, et al. Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services: A Randomized Clinical Trial[J]. JAMA Netw open, 2021, 4: e2032320. doi:  10.1001/jamanetworkopen.2020.32320
    [22] Chu J, Leung KHB, Snobelen P, et al. Machine learning-based dispatch of drone-delivered defibrillators for out-of-hospital cardiac arrest[J]. Resuscitation, 2021, 162: 120-127. doi:  10.1016/j.resuscitation.2021.02.028
    [23] Chin KC, Hsieh TC, Chiang WC, et al. Early recognition of a caller's emotion in out-of-hospital cardiac arrest dispatch-ing: An artificial intelligence approach[J]. Resuscitation, 2021, 167: 144-150. doi:  10.1016/j.resuscitation.2021.08.032
    [24] Seki T, Tamura T, Suzuki M. Outcome prediction of out-of-hospital cardiac arrest with presumed cardiac aetiology using an advanced machine learning technique[J]. Resuscitation, 2019, 141: 128-135. doi:  10.1016/j.resuscitation.2019.06.006
    [25] Zhou H, Lin C, Liu J, et al. Continuous monitoring of brain perfusion by cerebral oximetry after spontaneous return of circulation in cardiac arrest: a case report[J]. BMC Neurol, 2022, 22: 365. doi:  10.1186/s12883-022-02880-2
    [26] Teng R, Ding Y, See KC. Use of Robots in Critical Care: Systematic Review[J]. J Med Internet Res, 2022, 24: e33380. doi:  10.2196/33380
    [27] Lesimple A, Fritz C, Hutin A, et al. A novel capnogram analysis to guide ventilation during cardiopulmonary resuscitation: clinical and experimental observations[J]. Crit Care, 2022, 26: 287. doi:  10.1186/s13054-022-04156-0
    [28] Kim H, Kim KH, Hong KJ, et al. EEG-Based Prediction of the Recovery of Carotid Blood Flow during Cardiopulmonary Resuscitation in a Swine Model[J]. Sensors (Basel), 2021, 21: 3650. doi:  10.3390/s21113650
    [29] Suh GJ, Park J, Lee JC, et al. End-tidal CO(2)-guided automated robot CPR system in the pig. Preliminary communication[J]. Resuscitation, 2018, 127: 119-124. doi:  10.1016/j.resuscitation.2018.04.011
    [30] Chapman JD, Geneslaw AS, Babineau J, et al. Improving Ventilation Rates During Pediatric Cardiopulmonary Resuscitation[J]. Pediatrics, 2022, 150: e2021053030. doi:  10.1542/peds.2021-053030
    [31] Picard C, Drew R, Norris CM, et al. Cardiac Arrest Quality Improvement: A Single-Center Evaluation of Resuscitations Using Defibrillator, Feedback Device, and Survey Data[J]. J Emerg Nurs, 2022, 48: 224-232. e228. doi:  10.1016/j.jen.2021.11.005
    [32] Huang HK, Chen HH, Chen YL, et al. A Novel Assessment Using a Panoramic Video Camera of Resuscitation Quality in Patients following Out-of-Hospital Cardiac Arrest[J]. Prehosp Emerg Care, 2023, 27: 90-93. doi:  10.1080/10903127.2021.2015025
    [33] Bielski K, Böttiger BW, Pruc M, et al. Outcomes of audio-instructed and video-instructed dispatcher-assisted cardiopulmonary resuscitation: a systematic review and meta-analysis[J]. Ann Med, 2022, 54: 464-471. doi:  10.1080/07853890.2022.2032314
    [34] Latimer AJ, McCoy AM, Sayre MR. Emerging and Future Technologies in Out-of-Hospital Cardiac Arrest Care[J]. Cardiol Clin, 2018, 36: 429-441. doi:  10.1016/j.ccl.2018.03.010
    [35] Kwok H, Coult J, Blackwood J, et al. A method for continuous rhythm classification and early detection of ventricular fibrillation during CPR[J]. Resuscitation, 2022, 176: 90-97. doi:  10.1016/j.resuscitation.2022.05.019
    [36] Isasi I, Irusta U, Aramendi E, et al. Shock decision algorithm for use during load distributing band cardiopulmonary resuscitation[J]. Resuscitation, 2021, 165: 93-100. doi:  10.1016/j.resuscitation.2021.05.028
    [37] Jekova I, Krasteva V. Optimization of End-to-End Convolutional Neural Networks for Analysis of Out-of-Hospital Cardiac Arrest Rhythms during Cardiopulmonary Resuscitation[J]. Sensors (Basel), 2021, 21: 4105. doi:  10.3390/s21124105
    [38] Hajeb MS, Cascella A, Valentine M, et al. Deep Neural Network Approach for Continuous ECG-Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation[J]. J Am Heart Assoc, 2021, 10: e019065. doi:  10.1161/JAHA.120.019065
    [39] de Graaf C, Beesems SG, Oud S, et al. Analyzing the heart rhythm during chest compressions: Performance and clinical value of a new AED algorithm[J]. Resuscitation, 2021, 162: 320-328. doi:  10.1016/j.resuscitation.2021.01.003
    [40] Orlob S, Kern WJ, Alpers B, et al. Chest compression fraction calculation: A new, automated, robust method to identify periods of chest compressions from defibrillator data- Tested in Zoll X Series[J]. Resuscitation, 2022, 172: 162-169. doi:  10.1016/j.resuscitation.2021.12.028
    [41] 余明, 袁晶, 张广. 基于机器学习的心肺复苏干扰下心电节律识别算法研究[J]. 中国医疗设备, 2021, 36: 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202106009.htm
    [42] Mayampurath A, Hagopian R, Venable L, et al. Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest[J]. Crit Care Med, 2022, 50: e162-e172. doi:  10.1097/CCM.0000000000005286
    [43] Harford S, Del Rios M, Heinert S, et al. A machine learning approach for modeling decisions in the out of hospital cardiac arrest care workflow[J]. BMC Med Inform Decis Mak, 2022, 22: 21. doi:  10.1186/s12911-021-01730-4
    [44] Busl KM, Maciel CB. When the heart comes back but the brain is lost-are we ready to predict brain death after cardiac arrest?[J]. Resuscitation, 2022, 179: 256-258. doi:  10.1016/j.resuscitation.2022.09.002
    [45] Kim JW, Ha J, Kim T, et al. Developing a Time-Adaptive Prediction Model for Out-of-Hospital Cardiac Arrest: Nationwide Cohort Study in Korea[J]. J Med Internet Res, 2021, 23: e28361. doi:  10.2196/28361
    [46] Mansour A, Fuhrman JD, Ammar FE, et al. Machine Learning for Early Detection of Hypoxic-Ischemic Brain Injury After Cardiac Arrest[J]. Neurocrit Care, 2022, 36: 974-982. doi:  10.1007/s12028-021-01405-y
    [47] Hirano Y, Kondo Y, Sueyoshi K, et al. Early outcome prediction for out-of-hospital cardiac arrest with initial shockable rhythm using machine learning models[J]. Resuscitation, 2021, 158: 49-56. doi:  10.1016/j.resuscitation.2020.11.020
    [48] Chung CC, Chiu WT, Huang YH, et al. Identifying prognostic factors and developing accurate outcome predictions for in-hospital cardiac arrest by using artificial neural networks[J]. J Neurol Sci, 2021, 425: 117445. doi:  10.1016/j.jns.2021.117445
    [49] Zheng WL, Amorim E, Jing J, et al. Predicting neurological outcome in comatose patients after cardiac arrest with multiscale deep neural networks[J]. Resuscitation, 2021, 169: 86-94. doi:  10.1016/j.resuscitation.2021.10.034
    [50] Al-Dury N, Ravn-Fischer A, Hollenberg J, et al. Identifying the relative importance of predictors of survival in out of hospital cardiac arrest: a machine learning study[J]. Scand J Trauma Resusc Emerg Med, 2020, 28: 60. doi:  10.1186/s13049-020-00742-9
    [51] Chi CY, Ao S, Winkler A, et al. Predicting the Mortality and Readmission of In-Hospital Cardiac Arrest Patients With Electronic Health Records: A Machine Learning Approach[J]. J Med Internet Res, 2021, 23: e27798. doi:  10.2196/27798
    [52] Park JH, Shin SD, Song KJ, et al. Prediction of good neurological recovery after out-of-hospital cardiac arrest: A machine learning analysis[J]. Resuscitation, 2019, 142: 127-135. doi:  10.1016/j.resuscitation.2019.07.020
    [53] Cheng CY, Chiu IM, Zeng WH, et al. Machine Learning Models for Survival and Neurological Outcome Prediction of Out-of-Hospital Cardiac Arrest Patients[J]. Biomed Res Int, 2021, 2021: 9590131. http://www.socolar.com/Article/Index?aid=100090552048&jid=100000009046
    [54] Harford S, Darabi H, Heinert S, et al. Utilizing community level factors to improve prediction of out of hospital cardiac arrest outcome using machine learning[J]. Resuscitation, 2022, 178: 78-84. doi:  10.1016/j.resuscitation.2022.07.006
    [55] Vincelette C, Sokoloff C, Nadon N, et al. Efficacy and cost-feasibility of the Timely Chest Compression Training (T-CCT): a contextualized cardiopulmonary resuscitation training for personal support workers participating during in-hospital cardiac arrests[J]. CJEM, 2021, 23: 180-184. doi:  10.1007/s43678-020-00038-y
    [56] Moll-Khosrawi P, Falb A, Pinnschmidt H, et al. Virtual reality as a teaching method for resuscitation training in undergraduate first year medical students during COVID-19 pandemic: a randomised controlled trial[J]. BMC Med Educ, 2022, 22: 483. doi:  10.1186/s12909-022-03533-1
  • 加载中

Catalog

    通讯作者: 陈斌, bchen63@163.com
    • 1. 

      沈阳化工大学材料科学与工程学院 沈阳 110142

    1. 本站搜索
    2. 百度学术搜索
    3. 万方数据库搜索
    4. CNKI搜索

    Article Metrics

    Article views (1845) PDF downloads(181) Cited by()
    Proportional views
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return