GONG Huanhuan, KE Xiaowei, WANG Aimin, LI Xiangmin. An Interpretable Machine Learning Model for Predicting In-hospital Death Risk in Patients with Cardiac Arrest: Based on US Medical Information Mart for Intensive Care Database Ⅳ 2.0[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 528-535. DOI: 10.12290/xhyxzz.2022-0733
Citation: GONG Huanhuan, KE Xiaowei, WANG Aimin, LI Xiangmin. An Interpretable Machine Learning Model for Predicting In-hospital Death Risk in Patients with Cardiac Arrest: Based on US Medical Information Mart for Intensive Care Database Ⅳ 2.0[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 528-535. DOI: 10.12290/xhyxzz.2022-0733

An Interpretable Machine Learning Model for Predicting In-hospital Death Risk in Patients with Cardiac Arrest: Based on US Medical Information Mart for Intensive Care Database Ⅳ 2.0

Funds: 

Natural Science Foundation of Hunan Province 2022JJ30938

Natural Science Foundation of Hunan Province 2022JJ70165

More Information
  • Corresponding author:

    WANG Aimin, E-mail: wangaimin@csu.edu.cn

    LI Xiangmin, E-mail: lxm8229@csu.edu.cn

  • Received Date: December 29, 2022
  • Accepted Date: February 19, 2023
  • Issue Publish Date: May 29, 2023
  •   Objective  To develop and validate an interpretable machine learning model based on clinical characteristics to predict the risk of in-hospital death in patients with cardiac arrest.
      Methods  First clinical data of cardiac arrest patients admitted to ICU within 24 h and outcomes during hospitalization were extracted from Medical Information Mart for Intensive Care database Ⅳ (MIMIC-Ⅳ) 2.0. Six models predicting in-hospital death risk of cardiac arrest patients were constructed based on machine learning algorithm: XGBoost model, light gradient boosting machine (LGBM) model, decision tree (DT) model, K-nearest neighbor (KNN) model, Logistic regression model, and random forest (RF) model. Receiver operator characteristic (ROC) curve, clinical decision curve and calibration curve were used to evaluate the 6 models. Shapley additive explanation (SHAP) algorithm was used to explain and evaluate the effects of different clinical features on the optimal model to increase its interpretability.
      Results  A total of 1465 patients with cardiac arrest who met inclusion and exclusion criteria were included in the study. Among them, 773 patients survived and 692 died during hospitalization. After screening, a total of 82 clinical features were included for machine learning model construction. Compared with the other five models, the LGBM model had a higher area under the curve for predicting in-hospital death in cardiac arrest patients [0.834(95% CI: 0.688-0.894)], higher prediction accuracy for the risk of death than the Logistic regression model and XGBoost model (calibration degree: 0.166), better clinical decision performance, and displayed optimal overall performance. SHAP algorithm analysis showed that the three clinical features that had the greatest impact on the output of LGBM model were Glasgow eyes score, bicarbonate level and white blood cell count.
      Conclusion  Based on a large public medical and health database, a machine learning model named LGBM has the best performance to predict the risk of in-hospital death in patients with cardiac arrest, which will be helpful to assist more efficient clinical disease management and more precise medical intervention.
  • [1]
    陈红, 张重阳, 徐俊祥. 急诊院前、院内心脏骤停患者心肺复苏效果分析[J]. 河北医药, 2017, 39: 2475-2477. DOI: 10.3969/j.issn.1002-7386.2017.16.019
    [2]
    Chen J, Mei Z, Wang Y, et al. A nomogram to predict in hospital mortality in post-cardiac arrest patients: a retrospective cohort study[J]. Pol Arch Intern Med, 2023, 133: 16325
    [3]
    Ngiam KY, Khor IW. Big data and machine learning algorithms for health-care delivery[J]. Lancet Oncol, 2019, 20: e262-e273. DOI: 10.1016/S1470-2045(19)30149-4
    [4]
    Rauschert S, Raubenheimer K, Melton PE, et al. Machine learning and clinical epigenetics: a review of challenges for diagnosis and classification[J]. Clin Epigenetics, 2020, 12: 51. DOI: 10.1186/s13148-020-00842-4
    [5]
    Lee YW, Choi JW, Shin EH. Machine learning model for predicting malaria using clinical information[J]. Comput Biol Med, 2021, 129: 104151. DOI: 10.1016/j.compbiomed.2020.104151
    [6]
    Hou N, Li M, He L, et al. Predicting 30-days mortality for MIMIC-Ⅲ patients with sepsis-3: a machine learning approach using XGboost[J]. J Transl Med, 2020, 18: 462. DOI: 10.1186/s12967-020-02620-5
    [7]
    Chu J, Leung KHB, Snobelen P, et al. Machine learning-based dispatch of drone-delivered defibrillators for out-of-hospital cardiac arrest[J]. Resuscitation, 2021, 162: 120-127. DOI: 10.1016/j.resuscitation.2021.02.028
    [8]
    苏枫, 张少衡, 陈楠楠, 等. 基于机器学习分类判断算法构建心力衰竭疾病分期模型[J]. 中国组织工程研究, 2014, 49: 7938-7942. DOI: 10.3969/j.issn.2095-4344.2014.49.012
    [9]
    张颖莹, 刘怡果, 赵丹, 等. 基于机器学习建立脓毒症心肾综合征患者早期死亡风险预测模型[J]. 中华肾脏病杂志, 2022, 38: 785-793. DOI: 10.3760/cma.j.cn441217-20211126-00113
    [10]
    Stevens RD. Machine Learning to Decode the Electroencephalography for Post Cardiac Arrest Neuroprognostication[J]. Crit Care Med, 2019, 47: 1474-1476. DOI: 10.1097/CCM.0000000000003932
    [11]
    Jennings JB. Can machine learning predict recurrent cardiac arrest?[J]. Resuscitation, 2023, 184: 109704. DOI: 10.1016/j.resuscitation.2023.109704
    [12]
    Blomberg SN, Folke F, Ersbøll AK, et al. Machine learning as a supportive tool to recognize cardiac arrest in emergency calls[J]. Resuscitation, 2019, 138: 322-329. DOI: 10.1016/j.resuscitation.2019.01.015
    [13]
    Kwon JM, Jeon Kh, Kim HM, et al. Deep-learning-based out-of-hospital cardiac arrest prognostic system to predict clinical outcomes[J]. Resuscitation, 2019, 139: 84-91. DOI: 10.1016/j.resuscitation.2019.04.007
    [14]
    Lundberg SM, Erion G, Chen H, et al. From Local Explanations to Global Understanding with Explainable AI for Trees[J]. Nat Mach Intell, 2020, 2: 56-67. DOI: 10.1038/s42256-019-0138-9
    [15]
    王鑫, 廖彬, 李敏, 等. 融合LightGBM与SHAP的糖尿病预测及其特征分析方法[J]. 小型微型计算机系统, 2022, 43: 1877-1885. https://www.cnki.com.cn/Article/CJFDTOTAL-XXWX202209012.htm
    [16]
    Wu TT, Lin XQ, Mu Y, et al. Machine learning for early prediction of in-hospital cardiac arrest in patients with acute coronary syndromes[J]. Clin Cardiol, 2021, 44: 349-356. DOI: 10.1002/clc.23541
    [17]
    郑萍, 刘宁. 机器学习应用于院外心脏骤停神经系统预后预测模型的系统评价[J]. 中国胸心血管外科临床杂志, 2022, 29: 1172-1180. https://www.cnki.com.cn/Article/CJFDTOTAL-ZXYX202209013.htm
    [18]
    吴秋硕, 陆宗庆, 刘瑜, 等. 机器学习应用于心脏骤停早期预测模型的系统评价[J]. 中国循证医学杂志, 2021, 21: 942-952. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ202108011.htm
    [19]
    Mayampurath A, Hagopian R, Venable L, et al. Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest[J]. Crit Care Med, 2022, 50: e162-e172. DOI: 10.1097/CCM.0000000000005286
    [20]
    Yan J, Xu Y, Cheng Q, et al. LightGBM: accelerated genomically designed crop breeding through ensemble learning[J]. Genome Biol, 2021, 22: 271. DOI: 10.1186/s13059-021-02492-y
    [21]
    张红莉, 李月琴, 韩磊, 等. 基于LGBM和深度神经网络的HRRP目标识别方法[J]. 探测与控制学报, 2022, 44: 97-103, 114. https://www.cnki.com.cn/Article/CJFDTOTAL-XDYX202202017.htm
    [22]
    Rufo DD, Debelee TG, Ibenthal A, et al. Diagnosis of Diabetes Mellitus Using Gradient Boosting Machine (LightGBM)[J]. Diagnostics (Basel), 2021, 11: 1714. DOI: 10.3390/diagnostics11091714
    [23]
    Ge C, Deng F, Chen W, et al. Machine learning for early prediction of sepsis-associated acute brain injury[J]. Front Med (Lausanne), 2022, 9: 962027. http://pubmed.ncbi.nlm.nih.gov/35562803/
    [24]
    Nadolny K, Bujak K, Obremska M, et al. Glasgow Coma Scale score of more than four on admission predicts in-hospital survival in patients after out-of-hospital cardiac arrest[J]. Am J Emerg Med, 2021, 42: 90-94.
    [25]
    蔡兰兰, 杨增强. 70例心脏骤停后复苏患者格拉斯哥昏迷评分及预后分析[J]. 内科急危重症杂志, 2018, 24: 431-433. https://www.cnki.com.cn/Article/CJFDTOTAL-NKJW201805028.htm
    [26]
    Chen YC, Hung MS, Liu CY, et al. The association of emergency department administration of sodium bicarbonate after out of hospital cardiac arrest with outcomes[J]. Am J Emerg Med, 2018, 36: 1998-2004. http://pubmed.ncbi.nlm.nih.gov/29534919/
    [27]
    Celik T, Ozturk C, Balta S, et al. Sodium bicarbonate dilemma in patients with out-of-hospital cardiac arrest: A double-edged sword[J]. Am J Emerg Med, 2016, 34: 1314-1315. http://www.onacademic.com/detail/journal_1000038851198510_6788.html
    [28]
    Kim HJ, Park KN, Kim SH, et al. Association between the neutrophil-to-lymphocyte ratio and neurological outcomes in patients undergoing targeted temperature management after cardiac arrest[J]. J Crit Care, 2018, 47: 227-231. http://www.sciencedirect.com/science/article/pii/S0883944118303708
  • Related Articles

    [1]JIA Chunyu, WANG Gangan, WANG Jiahui, CHEN Gang, ZHENG Ke, LI Xuemei. Correlation Between Neutrophil-to-lymphocyte Ratio and eGFR in Diabetic Patients: A Cross-sectional Analysis Based on NHANES Data[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0908
    [2]ZHANG Nan, LIN Qingting, ZHU Huadong. Prediction Model for In-hospital Death of Patients with Cardiac Arrest[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 1023-1030. DOI: 10.12290/xhyxzz.2023-0378
    [3]LI Kexuan, SUN Zhen, QIU Huizhong, WU Bin, LIN Guole, LU Junyang, SUN Xiyu, NIU Beizhan, XU Lai, XIAO Yi. Establishment of A Colon Cancer Database at Peking Union Medical College Hospital: A Single-center Database Experience[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 566-574. DOI: 10.12290/xhyxzz.2022-0538
    [4]LIU Yuan, ZHAO Lin. Update and Interpretation of 2022 National Comprehensive Cancer Network Clinical Practice Guidelines for Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 999-1004. DOI: 10.12290/xhyxzz.2022-0271
    [5]SHI Zhenwei, LIU Zaiyi. Attaching Importance to the Standardized Construction of Artificial Intelligence Database of Medical Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 599-601. DOI: 10.12290/xhyxzz.2021-0507
    [8]Ming-sheng MA, Xü-de ZHANG, Min WEI, Shi-min ZHAO, Zheng-qing QIU. Efficacy of Low Dose Corticosteroid Therapy in Duchenne Muscular Dystrophy[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(4): 384-388. DOI: 10.3969/j.issn.1674-9081.2014.04.006
    [9]Xiao-jiang ZHANG, Qi-wen YANG, Hong-li SUN, He WANG, Yao WANG, Xiu-li XIE, Hong-tao DOU, Hong-mei SONG, Ren-yuan ZHU, Yu CHEN, Ying-chun XU. 2008—2011 Surveillance of Resistance in Bacteria Isolated from Intensive Care Units in Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(4): 430-436. DOI: 10.3969/j.issn.1674-9081.2012.04.016
    [10]Shuai TANG, Jie YI, Yu-guang HUANG. Cardiovascular Responses of Intubation with Shikani Seeing Optical Stylet and Macintosh Laryngoscope[J]. Medical Journal of Peking Union Medical College Hospital, 2012, 3(3): 314-317. DOI: 10.3969/j.issn.1674-9081.2012.03.015
  • Cited by

    Periodical cited type(4)

    1. 吴孟达,毛紫阳,王丹. Shapley值及其应用. 数学建模及其应用. 2024(01): 110-119 .
    2. 李深,唐霁松,曹颖,刘琳,谭魁,万毅,卿竹君,景渝,谢明莉,彭正良. XGBoost模型分析院内心脏骤停患者恢复自主循环的特征. 临床急诊杂志. 2024(11): 579-585 .
    3. 胡冬雪,牛承志,赵春雨,赵丽丽,王鑫. 基于机器学习的ICU多发伤患者发生谵妄预测模型的构建与评估. 中华创伤杂志. 2024(11): 1016-1021 .
    4. 张伟丽,邱晨,宋玉祥,罗云根,宋咪,高远. 机器学习在谵妄风险预测模型构建中的研究进展. 解放军医学院学报. 2023(11): 1292-1296 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (2192) PDF downloads (142) Cited by(6)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close