ZHANG Zhifei, YANG Zhengxin, HUANG Yunyou, ZHAN Jianfeng. Big Medical Data and Medical AI Standards: Status Quo, Opportunities and Challenges[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 614-620. DOI: 10.12290/xhyxzz.2021-0472
Citation: ZHANG Zhifei, YANG Zhengxin, HUANG Yunyou, ZHAN Jianfeng. Big Medical Data and Medical AI Standards: Status Quo, Opportunities and Challenges[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 614-620. DOI: 10.12290/xhyxzz.2021-0472

Big Medical Data and Medical AI Standards: Status Quo, Opportunities and Challenges

Funds: 

Standardization Research Project of Chinese Academy of Sciences BZ201800001

More Information
  • Corresponding author:

    HUANG Yunyou  Tel: 86-773-8285764, E-mail: huangyunyou@gxnu.edu.cn

    ZHAN Jianfeng  Tel: 86-10-62601166, E-mail: zhanjianfeng@ict.ac.cn

  • Received Date: June 14, 2021
  • Accepted Date: August 22, 2021
  • Available Online: September 15, 2021
  • Issue Publish Date: September 29, 2021
  • Big medical data and medical artificial intelligence (AI) not only have the great potential for improving the utilization of medical resources and the quality of medical service, but also pose challenges to privacy protection and technical risks. Standards are the consensus and norms for constructing, evaluating, and applying new technologies. The clinical application of big medical data and medical AI urgently needs regulations on data, systems, measurement standards, and codes of practice for evaluating new technologies. This paper defines big medical data and medical AI standards, including data-related standards, public datasets, benchmarks, codes of practice, and summarizes state-of-the-art and state-of-the-practice of big medical data and medical AI standards. While looking forward to the development prospect of big medical data and medical AI, we propose an innovative architecture consisting of big-data-and-AI-enhanced medical information systems and the big medical science infrastructure.
  • [1]
    Working Group 2 of the Joint Committee for Guides in Metrology. International vocabulary of metrology-Basic and general concepts and associated terms (VIM)[S]. [2021-06-08]. https://www.bipm.org/documents/20126/2071204/JCGM_200_2012.pdf.
    [2]
    McAllister J. Standards, Specifications, Protocols, Methods, and Codes[EB/OL]. (2020-09-16)[2021-06-08]. https://uark.libguides.com/Standards/Home.
    [3]
    International Organization for Standardization. Standardization and related activities-General vocabulary[S]. [2021-06-08]. https://www.iso.org/obp/ui/#iso:std:iso-iec:guide:2:ed-8:v1:en.
    [4]
    Bidgood WD Jr, Horii SC, Prior FW, et al. Understanding and using DICOM, the data interchange standard for biomedical imaging[J]. J Am Med Inform Assoc, 1997, 4: 199-212. DOI: 10.1136/jamia.1997.0040199
    [5]
    Wikipedia. Algorithm[EB/OL]. (2021-06-12)[2021-07-05]. https://en.wikipedia.org/wiki/Algorithm.
    [6]
    Price WN, Cohen IG. Privacy in the age of medical big data[J]. Nat Med, 2019, 25: 37-43. DOI: 10.1038/s41591-018-0272-7
    [7]
    World Health Organization. International Statistical Classification of Diseases and Related Health Problems 10th Revision[EB/OL]. [2021-06-08]. https://icd.who.int/browse10/2010/en.
    [8]
    LOINC. What LOINC is[EB/OL]. [2021-08-20]. https://loinc.org/get-started/what-loinc-is/.
    [9]
    SNOMED. SNOMED CT[EB/OL]. [2021-08-20]. https://www.snomed.org/snomed-ct/why-snomed-ct.
    [10]
    George WB, Stan H, Wesley R. HL7 V3 Message Development Framework[EB/OL]. (1999-11)[2021-08-20]. http://www.hl7.org/documentcenter/public/wg/mnm/Mdf99.pdf.
    [11]
    国家卫生计生委. 关于发布《电子病历共享文档规范第1部分: 病历概要》等57项卫生行业标准的通告[EB/OL]. (2016-09-12)[2021-08-20]. http://www.nhc.gov.cn/fzs/s7852d/201609/37f11aacca5a49c2ad0984c8fc7a2873.shtml.
    [12]
    中国医师协会. 关于发布《肝胆疾病标准数据规范》3项团体标准的公告[EB/OL]. (2020-10-10)[2021-08-20]. http://www.ttbz.org.cn/UploadFiles/StandardFpdFile/20201018233559493.pdf.
    [13]
    Rivera SC, Liu X, Chan AW, et al. Guidelines for clinical trial protocols for interventions involving artificial intelli-gence: the SPIRIT-AI extension[J]. Nat Med, 2020, 26: 1351-1363. DOI: 10.1038/s41591-020-1037-7
    [14]
    Rajpurkar P, Irvin J, Ball RL, et al. Deep learning for chest radiograph diagnosis: A retrospective comparison of the CheXNeXt algorithm to practicing radiologists[J]. PLoS Med, 2018, 15: e1002686. DOI: 10.1371/journal.pmed.1002686
    [15]
    De Fauw J, Ledsam JR, Romera-Paredes B, et al. Clinically applicable deep learning for diagnosis and referral in retinal disease[J]. Nat Med, 2018, 24: 1342-1350. DOI: 10.1038/s41591-018-0107-6
    [16]
    Yim J, Chopra R, Spitz T, et al. Predicting conversion to wet age-related macular degeneration using deep learning[J]. Nat Med, 2020, 26: 892-899. DOI: 10.1038/s41591-020-0867-7
    [17]
    Kim H, Goo JM, Lee KH, et al. Preoperative CT-based deep learning model for predicting disease-free survival in patients with lung adenocarcinomas[J]. Radiology, 2020, 296: 216-224. DOI: 10.1148/radiol.2020192764
    [18]
    McKinney SM, Sieniek M, Godbole V, et al. International evaluation of an AI system for breast cancer screening[J]. Nature, 2020, 577: 89-94. DOI: 10.1038/s41586-019-1799-6
    [19]
    Wang P, Berzin TM, Glissen Brown JR, et al. Real-time automatic detection system increases colonoscopic polyp and adenoma detection rates: a prospective randomised controlled study[J]. Gut, 2019, 68: 1813-1819. DOI: 10.1136/gutjnl-2018-317500
    [20]
    Tyler NS, Mosquera-Lopez CM, Wilson LM, et al. An artificial intelligence decision support system for the management of type 1 diabetes[J]. Nat Metab, 2020, 2: 612-619. DOI: 10.1038/s42255-020-0212-y
    [21]
    国家药品监督管理局医疗器械技术审评中心. 关于发布深度学习辅助决策医疗器械软件审评要点的通告[EB/OL]. (2019-07-03)[2021-07-05]. https://www.cmde.org.cn/CL0004/19360.html.
    [22]
    Food and Drug Administration. Artificial Intelligence and Machine Learning (AI/ML) Software as a Medical Device Action Plan[EB/OL]. (2021-01-12)[2021-07-05]. https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machine-learning-soft-ware-medical-device.
    [23]
    Petersen RC, Aisen PS, Beckett LA, et al. Alzheimer's Disease Neuroimaging Initiative (ADNI): clinical characterization[J]. Neurology, 2010, 74: 201-209. DOI: 10.1212/WNL.0b013e3181cb3e25
    [24]
    Johnson A, Pollard T, Shen L, et al. MIMIC-Ⅲ, a freely accessible critical care database[J]. Sci Data, 2016, 3: 160035. DOI: 10.1038/sdata.2016.35
    [25]
    Tomczak K, Czerwinska P, Wiznerowicz M. The Cancer Genome Atlas (TCGA): an immeasurable source of knowledge[J]. Contemp Oncol (Pozn), 2019, 19: A68-A77. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.809.8713&rep=rep1&type=pdf
    [26]
    Allen GI, Amoroso N, Anghel C, et al. Crowdsourced estimation of cognitive decline and resilience in Alzheimer's disease[J]. Alzheimers Dement, 2016, 12: 645-653. DOI: 10.1016/j.jalz.2016.02.006
    [27]
    Christov SC, Avrunin GS, Clarke LA, et al. A benchmark for evaluating software engineering techniques for improving medical processes[C]. Proceedings of the 2010 ICSE Workshop on Software Engineering in Health Care, 2010: 50-56.
    [28]
    Shamir L, Orlov N, Mark Eckley D, et al. ⅡCBU 2008: a proposed benchmark suite for biological image analysis[J]. Med Biol Eng Comput, 2008, 46: 943-947. DOI: 10.1007/s11517-008-0380-5
    [29]
    Zhang Z, Gao W, Zhang F, et al. Landscape of Big Medical Data: A Pragmatic Survey on Prioritized Tasks[J]. IEEE Access, 2019, 7: 15590-15611. DOI: 10.1109/ACCESS.2019.2891948
    [30]
    Liu X, Rivera SC, Moher D, et al. Reporting guidelines for clinical trial reports for interventions involving artificial intelligence: the CONSORT-AI extension[J]. Nat Med, 2020, 26: 1364-1374. DOI: 10.1038/s41591-020-1034-x
    [31]
    Act A. Health insurance portability and accountability act of 1996[J]. Public law, 1996, 104: 191. http://www.ehcca.com/presentations/hipaa6/foerster.pdf
    [32]
    国家卫生健康委员会. 关于印发国家健康医疗大数据标准、安全和服务管理办法(试行)的通知[EB/OL]. (2018-09-14)[2021-06-08]. http://www.nhc.gov.cn/mohwsbwstjxxzx/s8553/201809/f346909ef17e41499ab766890a34bff7.shtml.
    [33]
    全国人民代表大会. 中华人民共和国数据安全法[EB/OL]. (2021-06-10)[2021-07-02]. http://www.npc.gov.cn/npc/c30834/202106/7c9af12f51334a73b56d7938f99a788a.shtml.
    [34]
    国务院. 中华人民共和国人类遗传资源管理条列[EB/OL]. (2019-06-10)[2021-07-02]. http://www.gov.cn/zhengce/content/2019-06/10/content_5398829.htm.
    [35]
    Liang Y, Guo Y, Gong Y, et al. FLBench: A Benchmark Suite for Federated Learning[C]. Intelligent Computing and Block Chain: First BenchCouncil International Federated Conferences, 2020: 166.
    [36]
    Rajkomar A, Oren E, Chen K, et al. Scalable and accurate deep learning with electronic health records[J]. NPJ Digit Med, 2018, 1: 1-10. DOI: 10.1038/s41746-017-0008-y
    [37]
    Huang Y, Zhang Z, Wang N, et al. A new direction to promote the implementation of artificial intelligence in natural clinical settings[J]. arXiv preprint arXiv: 1905.02940. http://arxiv.org/abs/1905.02940
    [38]
    Nagendran M, Chen Y, Lovejoy CA, et al. Artificial intelligence versus clinicians: systematic review of design, reporting standards, and claims of deep learning studies[J]. BMJ, 2020, 368: m689. http://www.bmj.com/cgi/content/abstract/368/mar23_22/m689
    [39]
    Desai AN. Artificial Intelligence: Promise, Pitfalls, and Perspective[J]. JAMA, 2020, 323: 2448-2449. DOI: 10.1001/jama.2020.8737
    [40]
    Parikh RB, Obermeyer Z, Navathe AS. Regulation of predictive analytics in medicine[J]. Science, 2019, 363: 810-812. DOI: 10.1126/science.aaw0029
    [41]
    Chen H, Compton S, Hsiao O. DiabeticLink: A Health Big Data System for Patient Empowerment and Personalized Healthcare[C]. International Conference on Smart Health, 2013: 71-83.
    [42]
    Abràmoff MD, Lavin PT, Michele B, et al. Pivotal trial of an autonomous AI-based diagnostic system for detection of diabetic retinopathy in primary care offices[J]. NPJ Digit Med, 2018, 1: 1-8. DOI: 10.1038/s41746-017-0008-y
    [43]
    Wang ZQ, Zhou YJ, Zhao YX, et al. Diagnostic accuracy of a deep learning approach to calculate FFR from coronary CT angiography[J]. J Geriatr Cardiol, 2019, 16: 42-48. http://med.wanfangdata.com.cn/Paper/Detail/PeriodicalPaper_lnxzbxzz-e201901006
  • Related Articles

    [1]ZHOU Yuankai, LIU Pei, LIU Shengjun, YANG Yingying, YUAN Siyi, HE Huaiwu, LONG Yun. The Application of Generative Artificial Intelligence in the Assessment of Critical Care Medicine for Standardized Resident Physician Training[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0739
    [2]ZHOU Qi, LI Qinyuan, HE Hongfeng, PENG Dongrui, ZHANG Huayu, WANG Ye, YANG Kehu, CHEN Yaolong. A Standardized Approach to Recommending Diagnostic Criteria in Chinese Clinical Practice Guidelines[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(6): 1432-1438. DOI: 10.12290/xhyxzz.2024-0729
    [3]YAN Xinchun, HUO Li. Evaluation of Von Hippel-Lindau Syndrome Through Novel Small Molecular Tracer 68Ga-NY104 PET/CT Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 911-915. DOI: 10.12290/xhyxzz.2024-0216
    [4]GUAN Xinmiao, ZHU Yanzi, LIU Hao, LUO Minjing, LIANG Changhao, CAO Feng, LIU Zhihan, ZHOU Jianguo, ZHANG Dong, FEI Yutong. Requirements and Technical Aspects of Real-world Data Governance in China's Medical Standards and Guidelines[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/xhyxzz.2024-0409
    [5]ZHENG Xinya, HUANG Yunyou, ZHANG Yiting, WENG Shengjie, ZHAN Jianfeng, ZHAGN Zhifei. Medical Artificial Intelligence Standard System: History and Current Status[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1135-1141. DOI: 10.12290/xhyxzz.2023-0428
    [6]YU Weihong, ZHANG Xiao, WU Chan, CHEN Huan, YANG Zhikun, HE Feng, ZHANG Zhiqiao, ZHANG Bilei, GONG Di, WANG Yuelin, YANG Jingyuan, LI Bing, SUN Yanyuan, MA Yajing, LU Huiqin, XIA Wei, ZHOU Wei, ZHANG Donglei, PAN Qingmin, YANG Ning, WANG Shuna, SUN Xiaolei, YU Ying, SU Chang, WAN Bo, WANG Mingqi, WANG Min, CHEN Youxin. Procedures of Establishing a Well-annotated Database of Color Fundus Photography of Diabetic Retinopathy for Artificial Intelligence Research[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 684-688. DOI: 10.12290/xhyxzz.2021-0613
    [7]SHI Zhenwei, LIU Zaiyi. Attaching Importance to the Standardized Construction of Artificial Intelligence Database of Medical Imaging[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 599-601. DOI: 10.12290/xhyxzz.2021-0507
    [8]XIAO Nan, LI Zhanfeng, YAO Jianxin, PAN Zhiyao, YAO Zhifeng. Long Non-coding RNA and Cancer Stem Cells[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 373-379. DOI: 10.12290/xhyxzz.20190231
    [9]CHEN Yao-long, LUO Xu-fei, SHI Qian-ling, LYU Meng, ZHOU Qi, WANG Jian-jian, YANG Nan, GAO Dong-ping, YANG Shu, SHANG Hong-cai, YANG Ke-hu. How Will Artificial Intelligence Lead the Future of Clinical Practice Guidelines[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(1): 114-121. DOI: 10.12290/xhyxzz.2021-0012
    [10]Yao-long CHEN, Ke-hu YANG. How to Correctly Understand, Develop, and Apply Clinical Practice Guidelines[J]. Medical Journal of Peking Union Medical College Hospital, 2018, 9(4): 367-373. DOI: 10.3969/j.issn.1674-9081.2018.04.015
  • Cited by

    Periodical cited type(12)

    1. 董学思,李霓,赫捷. 中国癌症机会性筛查实施进展与展望. 肿瘤预防与治疗. 2025(02): 93-97 .
    2. 王敏,胡兆,徐晓巍,郑思,李姣,姚焰. 融合知识驱动和数据驱动的混合决策模型构建:以室性心动过速病因诊断为例. 协和医学杂志. 2025(02): 454-461 . 本站查看
    3. 徐超群,陈惠,刘臻臻. 儿童Ⅱ期人工晶状体植入术后青光眼相关不良事件影响因素与预测的研究进展. 眼科学报. 2024(08): 416-423 .
    4. 聂文凯,万振,董恬恬,李跃磊,赵卫康. Meta分析在医学信息系统中的潜力. 中国卫生产业. 2024(24): 140-143 .
    5. 顾子慧,刘桂锋,刘琼. 新冠肺炎科学数据集的元数据框架构建及可视化研究——以Re3data.org为例. 情报科学. 2023(04): 117-126 .
    6. 于海洋,张呐,贺子敬,方婷露,韩立. 弱人工智能数字化时代下的医技关系. 口腔医学. 2023(07): 577-583 .
    7. 张政,段怡,高志峰,张欢. 机器学习在手术中液体治疗的应用. 中国数字医学. 2023(07): 81-85 .
    8. 郑欣雅,黄运有,张奕婷,翁晟杰,詹剑锋,张知非. 医学人工智能标准体系:历史与现状. 协和医学杂志. 2023(06): 1135-1141 . 本站查看
    9. 王飞,汪鹏,黄艺璠,李颖,胡川. 基于医学大数据的临床科研模型智能化构建研究. 重庆医学. 2023(22): 3509-3512 .
    10. 巩永强,王超,许海云,方曙. 基于医学数据素养内涵的教育模式探讨. 医学与社会. 2022(07): 74-80 .
    11. 卢京川,郭代红,高奥,伏安,李超,郭海丽,王天琳,石廷永. 基于HIS数据的住院人群癫痫发作自动监测模块的建立与优化. 中国药物应用与监测. 2022(04): 248-253 .
    12. 薛佳凯. 刍议医学影像人工智能的研发应用现状与挑战. 科技资讯. 2021(29): 25-27 .

    Other cited types(2)

Catalog

    Article Metrics

    Article views (1736) PDF downloads (407) Cited by(14)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close