ZHENG Xinya, HUANG Yunyou, ZHANG Yiting, WENG Shengjie, ZHAN Jianfeng, ZHAGN Zhifei. Medical Artificial Intelligence Standard System: History and Current Status[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1135-1141. DOI: 10.12290/xhyxzz.2023-0428
Citation: ZHENG Xinya, HUANG Yunyou, ZHANG Yiting, WENG Shengjie, ZHAN Jianfeng, ZHAGN Zhifei. Medical Artificial Intelligence Standard System: History and Current Status[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1135-1141. DOI: 10.12290/xhyxzz.2023-0428

Medical Artificial Intelligence Standard System: History and Current Status

Funds: 

Strategic Priority Research Program of the Chinese Academy of Sciences XDA0320000

Strategic Priority Research Program of the Chinese Academy of Sciences XDA0320300

Guangxi Science and Technology Electric Power Data Analysis Research GuiKe AD20297004

More Information
  • Corresponding author:

    ZHAGN Zhifei, E-mail: zhifeiz@ccmu.edu.cn

  • Received Date: September 10, 2023
  • Accepted Date: October 29, 2023
  • Issue Publish Date: November 29, 2023
  • The standardization of medical artificial intelligence (AI) is currently in its infancy and falls short of meeting the needs for the development, deployment, control, assessment, and guidance of medical AI products. This not only makes it difficult to standardize the research and development process and therefore increase the cost and affect the quality of the products, but also leads to challenges in achieving unified interaction, comparison, and evaluation of AI products. It may result in incorrect estimation and evaluation of products, thus misguiding the direction of medical AI development. Consequently, establishing a mature and unified standard system for medical AI has become an urgent priority. To facilitate the advancement of the medical AI standard system from its nascent stage to maturity, we conduct an in-depth analysis of the development history of medical AI standards from four aspects: medical data standards, standard datasets, benchmarks, and norms/guidelines. By revealing the problems in the current medical AI standards, we aim to provide a reference for related research.
  • [1]
    Shehab M, Abualigah L, Shambour Q, et al. Machine learning in medical applications: A review of state-of-the-art methods[J]. Comput Biol Med, 2022, 145: 105458. DOI: 10.1016/j.compbiomed.2022.105458
    [2]
    Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine[J]. Nat Med, 2022, 28: 31-38. DOI: 10.1038/s41591-021-01614-0
    [3]
    Varma JR, Fernando S, Ting BY, et al. The Global Use of Artificial Intelligence in the Undergraduate Medical Curriculum: A Systematic Review[J]. Cureus, 2023, 15: e39701.
    [4]
    Grunhut1 J, Marques O, WyattNeeds ATM. Challenges, and Applications of Artificial Intelligence in Medical Education Curriculum[J]. JMIR Med Educ, 2022, 8: e35587. DOI: 10.2196/35587
    [5]
    Sim JZT, Fong QW, Huang W, et al. Machine learning in medicine: what clinicians should know[J]. Singapore Med J, 2023, 64: 91-97.
    [6]
    国家药品监督管理局. 人工智能医疗器械质量要求和评价第4部分: 可追溯性[EB/OL]. (2023-09-05)[2023-11-10]. https://std.samr.gov.cn/hb/search/stdHBDetailed?id=05E9A95426E17056E06397BE0A0A1931.
    [7]
    史雪莲, 陈敏. 医疗人工智能标准体系研究[J]. 中国卫生信息管理杂志, 2019, 12: 759-762. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGL201906027.htm
    [8]
    张知非, 杨郑鑫, 黄运有, 等. 医学大数据与人工智能标准体系: 现状、机遇与挑战[J]. 协和医学杂志, 2021, 12: 614-620. DOI: 10.12290/xhyxzz.2021-0472
    [9]
    马琳, 邓宏勇. 国内外临床研究元数据标准: 特点及现状[J]. 中国循证医学杂志, 2023, 23: 478-484. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ202304009.htm
    [10]
    周晓梅, 李烁, 崇雨田, 等. 临床研究数据标准化工作的思考[J]. 临床内科杂志, 2022, 39: 790-792. https://www.cnki.com.cn/Article/CJFDTOTAL-LCLZ202211024.htm
    [11]
    Lee AJ, Kim KW, Shin Y, et al. CDISC-compliant clinical trial imaging management system with automatic verification and data Transformation: Focusing on tumor response assessment data in clinical trials[J]. J Biomed Inform, 2021, 117: 103782. DOI: 10.1016/j.jbi.2021.103782
    [12]
    Duda SN, Kennedy N, Conway D, et al. HL7 FHIR-based tools and initiatives to support clinical research: a scoping review[J]. J Am Med Inform Assoc, 2022, 29: 1642-1653. DOI: 10.1093/jamia/ocac105
    [13]
    Ayaz M, Pasha MF, Alzahrani MY, et al. The Fast Health Interoperability Resources (FHIR) Standard: Systematic Literature Review of Implementations, Applications, Challenges and Opportunities[J]. JMIR Med Inform, 2021, 9: e21929. DOI: 10.2196/21929
    [14]
    张丽鑫, 钱庆, 唐明坤, 等. 人工智能医疗器械标准数据集构建现状[J]. 中华医学图书情报杂志, 2021, 30: 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YXTS202108001.htm
    [15]
    Wu B, Fu L, Guo X, et al. Multi-omics profiling and digital image analysis reveal the potential prognostic and immunotherapeutic properties of CD93 in stomach adenocarcinoma[J]. Front Immunol, 2023, 25: 984816.
    [16]
    石镇维, 刘再毅. 重视医学影像人工智能数据库的标准化建设[J]. 协和医学杂志, 2021, 12: 599-601. DOI: 10.12290/xhyxzz.2021-0507
    [17]
    马兆毅, 蒋薇, 宋超, 等. 肺部病变多模态影像和乳腺癌X线医学人工智能标准数据集研究[J]. 科技成果管理与研究, 2023, 18: 89-91.
    [18]
    王辉, 刘靖雅, 李哲, 等. 人工智能心电数据库的研究与应用[J]. 中国医疗设备, 2020, 35: 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202010003.htm
    [19]
    Yoo H, Yum Y, Park SW, et al. Standardized Database of 12-Lead Electrocardiograms with a Common Standard for the Promotion of Cardiovascular Research: KURIAS-ECG[J]. Healthc Inform Res, 2023, 29: 132-144.
    [20]
    于伟泓, 张潇, 吴婵, 等. 糖尿病视网膜病变眼底彩照人工智能研究标准数据库的建立规范[J]. 协和医学杂志, 2021, 12: 684-688. DOI: 10.12290/xhyxzz.2021-0613
    [21]
    中华医学会外科学分会外科手术学学组, 中华医学会器官移植学分会肝移植学组, 中国医师协会器官移植医师分会移植免疫学专业委员会. 肝脏移植标准数据集[J]. 器官移植, 2020, 11: 126-175. https://www.cnki.com.cn/Article/CJFDTOTAL-QGYZ202001021.htm
    [22]
    Zhou N, Yuan X, Du Q, et al. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations[J]. Nucleic Acids Res, 2023, 51: D571-D582.
    [23]
    Kaushal A, Altman R, Langlotz, C. Geographic distribution of US cohorts used to train deep learning algorithms[J]. J Am Med Assoc, 2020, 324: 1212-1213.
    [24]
    WHO. WHO Issues First Global Report on Artificial Intelligence (AI) in Health and Six Guiding Principles for Its Design and Use[EB/OL]. (2021-08-28)[2023-11-10]. https://www.who.int/news/item/28-06-2021-who-issues-first-global-report-on-ai-in-health-and-six-guiding-principles-for-its-design-and-use.
    [25]
    Blagec K, Kraiger J, Frühwirt W, et al. Benchmark datasets driving artificial intelligence development fail to capture the needs of medical professionals[J]. J Biomed Inform, 2023, 137: 104274.
    [26]
    Gao Y, Dligach D, Miller T, et al. DR. BENCH: Diagno-stic Reasoning Benchmark for Clinical Natural Language Processing[J]. J Biomed Inform, 2023, 138: 104286.
    [27]
    Karargyris A, Umeton R, Sheller MJ, et al. Federated benchmarking of medical artificial intelligence with MedPerf[J]. Nat Mach Intell, 2023, 5: 799-810.
    [28]
    Werdiger F, Visser M, Bivard A, et al. Benchmark dataset for clot detection in ischemic stroke vessel-based imaging: CODEC-Ⅳ[J]. Neuroimage, 2023, 271: 119985.
    [29]
    Wagner M, Müller-Stich BP, Kisilenko A, et al. Compara-tive validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark[J]. Med Image Anal, 2023, 86: 102770.
    [30]
    Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge[J]. Nature, 2023, 620: 172-180.
    [31]
    Walker HL, Ghani S, Kuemmerli C, et al. Reliability of Medical Information Provided by ChatGPT: Assessment Against Clinical Guidelines and Patient Information Quality Instrument[J]. J Med Internet Res, 2023, 25: e47479.
    [32]
    Biever C. The easy intelligence tests that AI chatbots fail[J]. Nature, 2023, 619: 686-689.
    [33]
    李志勇, 邱晓岚, 杨建龙, 等. WHO《为基于人工智能的医疗设备生成证据: 训练、验证和评估框架》解析及其对我国医学装备行业的启示[J]. 中国医学装备, 2022, 19: 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YXZB202207034.htm
    [34]
    Niemiec E. Will the EU Medical Device Regulation help to improve the safety and performance of medical AI devices?[J]. Digit Health, 2022, 30: 20552076221089079.
    [35]
    国家标准化管理委员会. 信息技术人工智能平台计算资源规范[EB/OL]. (2022-10-12)[2023-11-10]. https://std.samr.gov.cn/gb/search/gbDetailed?id=EB58F4DA9161B2A2E05397BE0A0A7D33.
    [36]
    国务院. 关于加强科技伦理治理的意见[EB/OL]. (2022-03-20)[2023-11-10]. https://www.gov.cn/zhengce/2022-03/20/content_5680105.htm.
    [37]
    国务院. 生成式人工智能服务管理暂行办法[EB/OL]. (2023-07-10)[2023-11-10]. https://www.gov.cn/zhengce/zhengceku/202307/content_6891752.htm.
  • Related Articles

    [1]SUN Jianhua, LUO Hongbo, LI Zunzhu, LU Meishan, LIAN Hui, WANG Xiaoting, Critical Care Ultrasound Study Group. Cognition and Practice of Doctor-Nurse Integration Construction in the Department of Critical Care Medicine[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 518-521. DOI: 10.12290/xhyxzz.2024-0116
    [2]WU Miao. Combining Education, Clinical Practice and Scientific Research: the Early Development of the Obstetrics and Gynecology of Peking Union Medical College(1919—1942)[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(2): 442-448. DOI: 10.12290/xhyxzz.2022-0364
    [3]LIU Yuan, ZHAO Lin. Update and Interpretation of 2022 National Comprehensive Cancer Network Clinical Practice Guidelines for Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(6): 999-1004. DOI: 10.12290/xhyxzz.2022-0271
    [4]LIU Hui, LAN Hui, ZHAO Siya, WANG Zijun, SHI Qianling, LIU Xiao, ZHOU Qi, WANG Jianjian, LYU Meng, LIU Yunlan, YANG Nan, XUN Yangqin, LI Qinyuan, PEI Hang, LIU Xingrong, CHEN Yaolong. Investigation and Evaluation of Chinese Clinical Practice Guidelines Published in Medical Journals in 2019:Research Gaps[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(3): 498-505. DOI: 10.12290/xhyxzz.2022-0029
    [5]LI Jing, LI Hang, YANG Yingyun, XIA Peng, LI Xiaoqing, LI Yue, YAN Xiaowei, ZHU Huijuan, PAN Hui, ZHANG Fengchun, ZHANG Shuyang. Exploration of Education for Complex Elite Medical Talents in the Department of Internal Medicine at Peking Union Medical College Hospital: A Summary of Clinical Medical Postdoctoral Project Since 2016[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 46-50. DOI: 10.12290/xhyxzz.2021-0463
    [6]LI Huiyan, XIAO Lihua, KUANG Ming. Exploration and Practice of the Mode of Training Top-notch and Innovative Medical Talents in the First Affiliated Hospital of Sun Yat-sen University[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 13-16. DOI: 10.12290/xhyxzz.2021-0724
    [7]FANG Xiangming, HAN Wei, XU Shiqi, RUAN Hengchao, CHEN Lei, DU Yue, XU Lingxiao, YU Fang, XIA Biaoquan. Iterative Innovation Empowers the Training of High-level Interdisciplinary Medical Talents in the New Era: Experiences from School of Medicine, Zhejiang University[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 9-12. DOI: 10.12290/xhyxzz.2021-0718
    [8]ZHANG Shuyang. Exploration and Practice of the Training System of Comprehensive Medical Talents at Peking Union Medical College Hospital[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(1): 5-8. DOI: 10.12290/xhyxzz.2021-0535
    [9]YANG Nan, CHEN Yaolong. Evaluation of Chinese Clinical Practice Guidelines Published in Medical Journals in 2019[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(3): 407-410. DOI: 10.12290/xhyxzz.2021-0323
    [10]LI Ji, YOU Wen, LIU Shuang, RUAN Ge-chong, XU Tian-ming, ZHANG Run-feng, ZHANG Xin-qing, QIAN Jia-ming. Clarify and Resolve Ethical Issues in the Teaching of Clinical Practice Based on the Four-topics Theory——An Example of Patients' Refusal to the Practice of Medical Students[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(2): 282-286. DOI: 10.12290/xhyxzz.20200135
  • Cited by

    Periodical cited type(7)

    1. 王栎垚,毛国育. 公立A医院运用DRG对临床科室的运营管理研究. 医学信息. 2023(04): 52-56 .
    2. 李梦滢,顼晋昆,杨菁. 基于归纳法和专家咨询法的CHS—DRG合并症、并发症分组探索——以UPPP手术在DB33和DB35入组为例. 中国医疗保险. 2023(09): 86-93 .
    3. 曾凡伟,任国娇. DRG视角下北京市3次医改对冠心病介入患者住院费用的影响. 现代医药卫生. 2023(19): 3406-3410 .
    4. 宋康,刘新靓,罗小霞,张志彬,潘卫兵,李准,黎浩. 基于决策树模型的梗阻性肾盂积水患者住院费用及病例组合优化研究. 华西医学. 2023(10): 1530-1536 .
    5. 丁敬美,韩磊,杜进兵. 武汉市DRG入组病例的费用倍率特征分析. 卫生经济研究. 2023(12): 28-32 .
    6. 伍渊麟,刘耀,甘岚澜,向贵圆,李晨,陈世耕,鲜秋婉. DRG支付方式下EB19组胸部大手术患者住院费用的影响因素研究. 重庆医学. 2023(23): 3665-3668 .
    7. 聂晓静,付豪斐,白荷荷,李亚萍,王金萍. 糖尿病患者DRG分组效果及住院费用影响因素分析. 中国药房. 2023(24): 3020-3024 .

    Other cited types(0)

Catalog

    Article Metrics

    Article views (718) PDF downloads (259) Cited by(7)
    Related

    /

    DownLoad:  Full-Size Img  PowerPoint
    Return
    Return
    x Close Forever Close