Citation: | ZHENG Xinya, HUANG Yunyou, ZHANG Yiting, WENG Shengjie, ZHAN Jianfeng, ZHAGN Zhifei. Medical Artificial Intelligence Standard System: History and Current Status[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(6): 1135-1141. DOI: 10.12290/xhyxzz.2023-0428 |
[1] |
Shehab M, Abualigah L, Shambour Q, et al. Machine learning in medical applications: A review of state-of-the-art methods[J]. Comput Biol Med, 2022, 145: 105458. DOI: 10.1016/j.compbiomed.2022.105458
|
[2] |
Rajpurkar P, Chen E, Banerjee O, et al. AI in health and medicine[J]. Nat Med, 2022, 28: 31-38. DOI: 10.1038/s41591-021-01614-0
|
[3] |
Varma JR, Fernando S, Ting BY, et al. The Global Use of Artificial Intelligence in the Undergraduate Medical Curriculum: A Systematic Review[J]. Cureus, 2023, 15: e39701.
|
[4] |
Grunhut1 J, Marques O, WyattNeeds ATM. Challenges, and Applications of Artificial Intelligence in Medical Education Curriculum[J]. JMIR Med Educ, 2022, 8: e35587. DOI: 10.2196/35587
|
[5] |
Sim JZT, Fong QW, Huang W, et al. Machine learning in medicine: what clinicians should know[J]. Singapore Med J, 2023, 64: 91-97.
|
[6] |
国家药品监督管理局. 人工智能医疗器械质量要求和评价第4部分: 可追溯性[EB/OL]. (2023-09-05)[2023-11-10]. https://std.samr.gov.cn/hb/search/stdHBDetailed?id=05E9A95426E17056E06397BE0A0A1931.
|
[7] |
史雪莲, 陈敏. 医疗人工智能标准体系研究[J]. 中国卫生信息管理杂志, 2019, 12: 759-762. https://www.cnki.com.cn/Article/CJFDTOTAL-WSGL201906027.htm
|
[8] |
张知非, 杨郑鑫, 黄运有, 等. 医学大数据与人工智能标准体系: 现状、机遇与挑战[J]. 协和医学杂志, 2021, 12: 614-620. DOI: 10.12290/xhyxzz.2021-0472
|
[9] |
马琳, 邓宏勇. 国内外临床研究元数据标准: 特点及现状[J]. 中国循证医学杂志, 2023, 23: 478-484. https://www.cnki.com.cn/Article/CJFDTOTAL-ZZXZ202304009.htm
|
[10] |
周晓梅, 李烁, 崇雨田, 等. 临床研究数据标准化工作的思考[J]. 临床内科杂志, 2022, 39: 790-792. https://www.cnki.com.cn/Article/CJFDTOTAL-LCLZ202211024.htm
|
[11] |
Lee AJ, Kim KW, Shin Y, et al. CDISC-compliant clinical trial imaging management system with automatic verification and data Transformation: Focusing on tumor response assessment data in clinical trials[J]. J Biomed Inform, 2021, 117: 103782. DOI: 10.1016/j.jbi.2021.103782
|
[12] |
Duda SN, Kennedy N, Conway D, et al. HL7 FHIR-based tools and initiatives to support clinical research: a scoping review[J]. J Am Med Inform Assoc, 2022, 29: 1642-1653. DOI: 10.1093/jamia/ocac105
|
[13] |
Ayaz M, Pasha MF, Alzahrani MY, et al. The Fast Health Interoperability Resources (FHIR) Standard: Systematic Literature Review of Implementations, Applications, Challenges and Opportunities[J]. JMIR Med Inform, 2021, 9: e21929. DOI: 10.2196/21929
|
[14] |
张丽鑫, 钱庆, 唐明坤, 等. 人工智能医疗器械标准数据集构建现状[J]. 中华医学图书情报杂志, 2021, 30: 1-8. https://www.cnki.com.cn/Article/CJFDTOTAL-YXTS202108001.htm
|
[15] |
Wu B, Fu L, Guo X, et al. Multi-omics profiling and digital image analysis reveal the potential prognostic and immunotherapeutic properties of CD93 in stomach adenocarcinoma[J]. Front Immunol, 2023, 25: 984816.
|
[16] |
石镇维, 刘再毅. 重视医学影像人工智能数据库的标准化建设[J]. 协和医学杂志, 2021, 12: 599-601. DOI: 10.12290/xhyxzz.2021-0507
|
[17] |
马兆毅, 蒋薇, 宋超, 等. 肺部病变多模态影像和乳腺癌X线医学人工智能标准数据集研究[J]. 科技成果管理与研究, 2023, 18: 89-91.
|
[18] |
王辉, 刘靖雅, 李哲, 等. 人工智能心电数据库的研究与应用[J]. 中国医疗设备, 2020, 35: 17-22. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202010003.htm
|
[19] |
Yoo H, Yum Y, Park SW, et al. Standardized Database of 12-Lead Electrocardiograms with a Common Standard for the Promotion of Cardiovascular Research: KURIAS-ECG[J]. Healthc Inform Res, 2023, 29: 132-144.
|
[20] |
于伟泓, 张潇, 吴婵, 等. 糖尿病视网膜病变眼底彩照人工智能研究标准数据库的建立规范[J]. 协和医学杂志, 2021, 12: 684-688. DOI: 10.12290/xhyxzz.2021-0613
|
[21] |
中华医学会外科学分会外科手术学学组, 中华医学会器官移植学分会肝移植学组, 中国医师协会器官移植医师分会移植免疫学专业委员会. 肝脏移植标准数据集[J]. 器官移植, 2020, 11: 126-175. https://www.cnki.com.cn/Article/CJFDTOTAL-QGYZ202001021.htm
|
[22] |
Zhou N, Yuan X, Du Q, et al. FerrDb V2: update of the manually curated database of ferroptosis regulators and ferroptosis-disease associations[J]. Nucleic Acids Res, 2023, 51: D571-D582.
|
[23] |
Kaushal A, Altman R, Langlotz, C. Geographic distribution of US cohorts used to train deep learning algorithms[J]. J Am Med Assoc, 2020, 324: 1212-1213.
|
[24] |
WHO. WHO Issues First Global Report on Artificial Intelligence (AI) in Health and Six Guiding Principles for Its Design and Use[EB/OL]. (2021-08-28)[2023-11-10]. https://www.who.int/news/item/28-06-2021-who-issues-first-global-report-on-ai-in-health-and-six-guiding-principles-for-its-design-and-use.
|
[25] |
Blagec K, Kraiger J, Frühwirt W, et al. Benchmark datasets driving artificial intelligence development fail to capture the needs of medical professionals[J]. J Biomed Inform, 2023, 137: 104274.
|
[26] |
Gao Y, Dligach D, Miller T, et al. DR. BENCH: Diagno-stic Reasoning Benchmark for Clinical Natural Language Processing[J]. J Biomed Inform, 2023, 138: 104286.
|
[27] |
Karargyris A, Umeton R, Sheller MJ, et al. Federated benchmarking of medical artificial intelligence with MedPerf[J]. Nat Mach Intell, 2023, 5: 799-810.
|
[28] |
Werdiger F, Visser M, Bivard A, et al. Benchmark dataset for clot detection in ischemic stroke vessel-based imaging: CODEC-Ⅳ[J]. Neuroimage, 2023, 271: 119985.
|
[29] |
Wagner M, Müller-Stich BP, Kisilenko A, et al. Compara-tive validation of machine learning algorithms for surgical workflow and skill analysis with the HeiChole benchmark[J]. Med Image Anal, 2023, 86: 102770.
|
[30] |
Singhal K, Azizi S, Tu T, et al. Large language models encode clinical knowledge[J]. Nature, 2023, 620: 172-180.
|
[31] |
Walker HL, Ghani S, Kuemmerli C, et al. Reliability of Medical Information Provided by ChatGPT: Assessment Against Clinical Guidelines and Patient Information Quality Instrument[J]. J Med Internet Res, 2023, 25: e47479.
|
[32] |
Biever C. The easy intelligence tests that AI chatbots fail[J]. Nature, 2023, 619: 686-689.
|
[33] |
李志勇, 邱晓岚, 杨建龙, 等. WHO《为基于人工智能的医疗设备生成证据: 训练、验证和评估框架》解析及其对我国医学装备行业的启示[J]. 中国医学装备, 2022, 19: 157-167. https://www.cnki.com.cn/Article/CJFDTOTAL-YXZB202207034.htm
|
[34] |
Niemiec E. Will the EU Medical Device Regulation help to improve the safety and performance of medical AI devices?[J]. Digit Health, 2022, 30: 20552076221089079.
|
[35] |
国家标准化管理委员会. 信息技术人工智能平台计算资源规范[EB/OL]. (2022-10-12)[2023-11-10]. https://std.samr.gov.cn/gb/search/gbDetailed?id=EB58F4DA9161B2A2E05397BE0A0A7D33.
|
[36] |
国务院. 关于加强科技伦理治理的意见[EB/OL]. (2022-03-20)[2023-11-10]. https://www.gov.cn/zhengce/2022-03/20/content_5680105.htm.
|
[37] |
国务院. 生成式人工智能服务管理暂行办法[EB/OL]. (2023-07-10)[2023-11-10]. https://www.gov.cn/zhengce/zhengceku/202307/content_6891752.htm.
|
[1] | WANG Ziyi, LU Cuncun, HUANG Jiayi, ZHANG Jinglei, SHANG Wenru, CUI Lu, LIU Wendi, DENG Xiuxiu, ZHAO Xiaoxiao, YANG Kehu, LI Xiuxia. Investigation and Evaluation of Systematic Reviews of Prediction Models Published in Chinese Journals: Methodological and Reporting Quality[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(4): 927-935. DOI: 10.12290/xhyxzz.2023-0418 |
[2] | ZHANG Zuyu, WEI Hong, LIU Qian, WANG Yaoqiang, FAN Xueyan, LUO Ruiying, LUO Changjiang. Establishment of a LASSO-Logistic Regression-based Risk Prediction Model for Early Recurrence of Siewert Ⅱ/Ⅲ Adenocarcinoma of Esophagogastric Junction Post-Surgery[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(3): 604-615. DOI: 10.12290/xhyxzz.2023-0502 |
[3] | DONG Na, MA Ganqing, WANG Lulu, SHI Ronghui, FENG Jie, HUANG Xiaojun. Establishment and Validation of Prediction Models for Non-curative Resection After ESD for Early Gastric Cancer[J]. Medical Journal of Peking Union Medical College Hospital, 2024, 15(1): 109-116. DOI: 10.12290/xhyxzz.2023-0442 |
[4] | ZHANG Zuyu, WEI Hong, LIU Qian, WANG Yaoqiang, FAN Xueyan, LUO Ruiying, LUO Changjiang. Establishment of a LASSO Regression-Based Risk Prediction Model for Early Recurrence of SiewertⅡ/Ⅲ Adenocarcinoma of Esophagogastric Junction Post-Surgery[J]. Medical Journal of Peking Union Medical College Hospital. DOI: 10.12290/j.issn.1674-9081.2023-0502 |
[5] | ZHANG Nan, LIN Qingting, ZHU Huadong. Prediction Model for In-hospital Death of Patients with Cardiac Arrest[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(5): 1023-1030. DOI: 10.12290/xhyxzz.2023-0378 |
[6] | GONG Huanhuan, KE Xiaowei, WANG Aimin, LI Xiangmin. An Interpretable Machine Learning Model for Predicting In-hospital Death Risk in Patients with Cardiac Arrest: Based on US Medical Information Mart for Intensive Care Database Ⅳ 2.0[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 528-535. DOI: 10.12290/xhyxzz.2022-0733 |
[7] | SUN Fangcan, HAN Bing, GAO Yan, SHEN Minhong, CHEN Youguo, ZHONG Wen. Validation of Six Predictive Models for Adverse Outcomes of Hypertensive Disorders of Pregnancy in Eastern and Western China[J]. Medical Journal of Peking Union Medical College Hospital, 2022, 13(5): 837-844. DOI: 10.12290/xhyxzz.2021-0778 |
[8] | ZHENG Hua, ZHANG Meng, ZHAO Ze, LIN Jianfeng, GUO Xiuzhi, XIA Peng, REN Fei, QIU Ling, ZHOU Jiong, CHEN Limeng. Establishing AKI Warning System in Peking Union Medical College Hospital from a Machine Learning Approach: A Single-center Research Protocol[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(6): 913-921. DOI: 10.12290/xhyxzz.2021-0519 |
[9] | ZHANG Gumuyang, XU Lili, MAO Li, LI Xiuli, JIN Zhengyu, SUN Hao. CT-based Radiomics to Predict Recurrence of Bladder Cancer after Resection in One Year: A Preliminary Study[J]. Medical Journal of Peking Union Medical College Hospital, 2021, 12(5): 698-704. DOI: 10.12290/xhyxzz.2021-0511 |
[10] | Shan-shan YOU, Yu-xin JIANG, Qing-li ZHU, Jing ZHANG, He LIU, Meng-su XIAO, Qing DAI, Qiang SUN. A Breast Cancer Risk Prediction Model Based on the Clinical Characteristics and Sonographic Features[J]. Medical Journal of Peking Union Medical College Hospital, 2014, 5(1): 26-30. DOI: 10.3969/j.issn.1674-9081.2014.01.007 |
1. |
倪文娟,黄挺,杨健舟,任鹏宇. 脓毒症休克复苏早期氧摄取率变化及其与预后的相关性研究. 浙江创伤外科. 2024(04): 710-712 .
![]() |