留言板

尊敬的读者、作者、审稿人, 关于本刊的投稿、审稿、编辑和出版的任何问题, 您可以本页添加留言。我们将尽快给您答复。谢谢您的支持!

姓名
邮箱
手机号码
标题
留言内容
验证码

人工智能在心肺复苏中的应用

刘帅 朱华栋

刘帅, 朱华栋. 人工智能在心肺复苏中的应用[J]. 协和医学杂志, 2023, 14(3): 453-458. doi: 10.12290/xhyxzz.2022-0711
引用本文: 刘帅, 朱华栋. 人工智能在心肺复苏中的应用[J]. 协和医学杂志, 2023, 14(3): 453-458. doi: 10.12290/xhyxzz.2022-0711
LIU Shuai, ZHU Huadong. Application of Artificial Intelligence in Cardiopulmonary Resuscitation[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 453-458. doi: 10.12290/xhyxzz.2022-0711
Citation: LIU Shuai, ZHU Huadong. Application of Artificial Intelligence in Cardiopulmonary Resuscitation[J]. Medical Journal of Peking Union Medical College Hospital, 2023, 14(3): 453-458. doi: 10.12290/xhyxzz.2022-0711

人工智能在心肺复苏中的应用

doi: 10.12290/xhyxzz.2022-0711
基金项目: 

科技创新2030-新一代人工智能重大项目 2020AAA0109600

详细信息
    通讯作者:

    朱华栋, E-mail:huadongzhu@hotmail.com

  • 中图分类号: R459.7;TP18

Application of Artificial Intelligence in Cardiopulmonary Resuscitation

Funds: 

Scientific and Technological Innovation 2030-New Generation Artificial Intelligence Project 2020AAA0109600

More Information
  • 摘要: 随着人工智能技术、计算机硬件以及大数据的发展, 生命科学领域涌现出越来越多的人工智能设备及算法。大量数据分析结果显示, 人工智能设备能够对心脏骤停进行风险预测和早期识别, 还可指导心肺复苏实施及复苏后临床预后的预测和个性化诊疗。人工智能不仅可为科研提供新思路, 且在临床决策与医疗资源配置中扮演重要角色, 本文将围绕人工智能在心肺复苏中的应用情况进行阐述, 以期为临床提供参考。
    作者贡献:刘帅负责文献检索及论文撰写;朱华栋负责论文选题及审校。
    利益冲突:所有作者均声明不存在利益冲突
  • [1] 王敏, 周满红. 输出生理参数反馈指导下的心肺复苏[J]. 中国急救医学, 2020, 40: 768-772. https://www.cnki.com.cn/Article/CJFDTOTAL-ZJJY202008015.htm
    [2] Shah A, Ahirrao S, Pandya S, et al. Smart Cardiac Framework for an Early Detection of Cardiac Arrest Condition and Risk[J]. Front Public Health, 2021, 9: 762303. doi:  10.3389/fpubh.2021.762303
    [3] Sim I. Mobile Devices and Health[J]. N Engl J Med, 2019, 381: 956-968. doi:  10.1056/NEJMra1806949
    [4] Harford S, Darabi H, Del Rios M, et al. A machine learning based model for Out of Hospital cardiac arrest outcome classification and sensitivity analysis[J]. Resuscitation, 2019, 138: 134-140. doi:  10.1016/j.resuscitation.2019.03.012
    [5] Lo YH, Siu YCA. Predicting Survived Events in Nontraumatic Out-of-Hospital Cardiac Arrest: A Comparison Study on Machine Learning and Regression Models[J]. J Emerg Med, 2021, 61: 683-694. doi:  10.1016/j.jemermed.2021.07.058
    [6] Ha ACT, Doumouras BS, Wang CN, et al. Prediction of Sudden Cardiac Arrest in the General Population: Review of Traditional and Emerging Risk Factors[J]. Can J Cardiol, 2022, 38: 465-478. doi:  10.1016/j.cjca.2022.01.007
    [7] Layeghian Javan S, Sepehri MM, Layeghian Javan M, et al. An intelligent warning model for early prediction of cardiac arrest in sepsis patients[J]. Comput Methods Programs Biomed, 2019, 178: 47-58. doi:  10.1016/j.cmpb.2019.06.010
    [8] Li YJ, Ye WY, Yang K, et al. Prediction of cardiac arrest in critically ill patients based on bedside vital signs monitoring[J]. Comput Methods Programs Biomed, 2022, 214: 106568. doi:  10.1016/j.cmpb.2021.106568
    [9] Wu TT, Lin XQ, Mu Y, et al. Machine learning for early prediction of in-hospital cardiac arrest in patients with acute coronary syndromes[J]. Clin Cardiol, 2021, 44: 349-356. doi:  10.1002/clc.23541
    [10] Fernandes M, Mendes R, Vieira SM, et al. Risk of mortality and cardiopulmonary arrest in critical patients presenting to the emergency department using machine learning and natural language processing[J]. PLoS One, 2020, 15: e0230876. doi:  10.1371/journal.pone.0230876
    [11] Jang DH, Kim J, Jo YH, et al. Developing neural network models for early detection of cardiac arrest in emergency department[J]. Am J Emerg Med, 2020, 38: 43-49. doi:  10.1016/j.ajem.2019.04.006
    [12] Trayanova NA, Topol EJ. Deep learning a person's risk of sudden cardiac death[J]. Lancet, 2022, 399: 1933. doi:  10.1016/S0140-6736(22)00881-9
    [13] Martinez-Alanis M, Bojorges-Valdez E, Wessel N, et al. Prediction of Sudden Cardiac Death Risk with a Support Vector Machine Based on Heart Rate Variability and Heartprint Indices[J]. Sensors (Basel), 2020, 20: 5483. doi:  10.3390/s20195483
    [14] Lee YJ, Cho KJ, Kwon O, et al. A multicentre validation study of the deep learning-based early warning score for predicting in-hospital cardiac arrest in patients admitted to general wards[J]. Resuscitation, 2021, 163: 78-85. doi:  10.1016/j.resuscitation.2021.04.013
    [15] Kwon JM, Kim KH, Jeon KH, et al. Artificial intelligence algorithm for predicting cardiac arrest using electrocardiography[J]. Scand J Trauma Resusc Emerg Med, 2020, 28: 98. doi:  10.1186/s13049-020-00791-0
    [16] Shashikumar SP, Wardi G, Paul P, et al. Development and Prospective Validation of a Deep Learning Algorithm for Predicting Need for Mechanical Ventilation[J]. Chest, 2021, 159: 2264-2273. doi:  10.1016/j.chest.2020.12.009
    [17] Ueno R, Xu L, Uegami W, et al. Value of laboratory results in addition to vital signs in a machine learning algorithm to predict in-hospital cardiac arrest: A single-center retrospective cohort study[J]. PLoS One, 2020, 15: e0235835. doi:  10.1371/journal.pone.0235835
    [18] Park JH, Choi J, Lee S, et al. Use of Time-to-Event Analysis to Develop On-Scene Return of Spontaneous Circulation Prediction for Out-of-Hospital Cardiac Arrest Patients[J]. Ann Emerg Med, 2022, 79: 132-144. doi:  10.1016/j.annemergmed.2021.07.121
    [19] Blomberg SN, Folke F, Ersbøll AK, et al. Machine learning as a supportive tool to recognize cardiac arrest in emergency calls[J]. Resuscitation, 2019, 138: 322-329. doi:  10.1016/j.resuscitation.2019.01.015
    [20] Byrsell F, Claesson A, Ringh M, et al. Machine learning can support dispatchers to better and faster recognize out-of-hospital cardiac arrest during emergency calls: A retrospective study[J]. Resuscitation, 2021, 162: 218-226. doi:  10.1016/j.resuscitation.2021.02.041
    [21] Blomberg SN, Christensen HC, Lippert F, et al. Effect of Machine Learning on Dispatcher Recognition of Out-of-Hospital Cardiac Arrest During Calls to Emergency Medical Services: A Randomized Clinical Trial[J]. JAMA Netw open, 2021, 4: e2032320. doi:  10.1001/jamanetworkopen.2020.32320
    [22] Chu J, Leung KHB, Snobelen P, et al. Machine learning-based dispatch of drone-delivered defibrillators for out-of-hospital cardiac arrest[J]. Resuscitation, 2021, 162: 120-127. doi:  10.1016/j.resuscitation.2021.02.028
    [23] Chin KC, Hsieh TC, Chiang WC, et al. Early recognition of a caller's emotion in out-of-hospital cardiac arrest dispatch-ing: An artificial intelligence approach[J]. Resuscitation, 2021, 167: 144-150. doi:  10.1016/j.resuscitation.2021.08.032
    [24] Seki T, Tamura T, Suzuki M. Outcome prediction of out-of-hospital cardiac arrest with presumed cardiac aetiology using an advanced machine learning technique[J]. Resuscitation, 2019, 141: 128-135. doi:  10.1016/j.resuscitation.2019.06.006
    [25] Zhou H, Lin C, Liu J, et al. Continuous monitoring of brain perfusion by cerebral oximetry after spontaneous return of circulation in cardiac arrest: a case report[J]. BMC Neurol, 2022, 22: 365. doi:  10.1186/s12883-022-02880-2
    [26] Teng R, Ding Y, See KC. Use of Robots in Critical Care: Systematic Review[J]. J Med Internet Res, 2022, 24: e33380. doi:  10.2196/33380
    [27] Lesimple A, Fritz C, Hutin A, et al. A novel capnogram analysis to guide ventilation during cardiopulmonary resuscitation: clinical and experimental observations[J]. Crit Care, 2022, 26: 287. doi:  10.1186/s13054-022-04156-0
    [28] Kim H, Kim KH, Hong KJ, et al. EEG-Based Prediction of the Recovery of Carotid Blood Flow during Cardiopulmonary Resuscitation in a Swine Model[J]. Sensors (Basel), 2021, 21: 3650. doi:  10.3390/s21113650
    [29] Suh GJ, Park J, Lee JC, et al. End-tidal CO(2)-guided automated robot CPR system in the pig. Preliminary communication[J]. Resuscitation, 2018, 127: 119-124. doi:  10.1016/j.resuscitation.2018.04.011
    [30] Chapman JD, Geneslaw AS, Babineau J, et al. Improving Ventilation Rates During Pediatric Cardiopulmonary Resuscitation[J]. Pediatrics, 2022, 150: e2021053030. doi:  10.1542/peds.2021-053030
    [31] Picard C, Drew R, Norris CM, et al. Cardiac Arrest Quality Improvement: A Single-Center Evaluation of Resuscitations Using Defibrillator, Feedback Device, and Survey Data[J]. J Emerg Nurs, 2022, 48: 224-232. e228. doi:  10.1016/j.jen.2021.11.005
    [32] Huang HK, Chen HH, Chen YL, et al. A Novel Assessment Using a Panoramic Video Camera of Resuscitation Quality in Patients following Out-of-Hospital Cardiac Arrest[J]. Prehosp Emerg Care, 2023, 27: 90-93. doi:  10.1080/10903127.2021.2015025
    [33] Bielski K, Böttiger BW, Pruc M, et al. Outcomes of audio-instructed and video-instructed dispatcher-assisted cardiopulmonary resuscitation: a systematic review and meta-analysis[J]. Ann Med, 2022, 54: 464-471. doi:  10.1080/07853890.2022.2032314
    [34] Latimer AJ, McCoy AM, Sayre MR. Emerging and Future Technologies in Out-of-Hospital Cardiac Arrest Care[J]. Cardiol Clin, 2018, 36: 429-441. doi:  10.1016/j.ccl.2018.03.010
    [35] Kwok H, Coult J, Blackwood J, et al. A method for continuous rhythm classification and early detection of ventricular fibrillation during CPR[J]. Resuscitation, 2022, 176: 90-97. doi:  10.1016/j.resuscitation.2022.05.019
    [36] Isasi I, Irusta U, Aramendi E, et al. Shock decision algorithm for use during load distributing band cardiopulmonary resuscitation[J]. Resuscitation, 2021, 165: 93-100. doi:  10.1016/j.resuscitation.2021.05.028
    [37] Jekova I, Krasteva V. Optimization of End-to-End Convolutional Neural Networks for Analysis of Out-of-Hospital Cardiac Arrest Rhythms during Cardiopulmonary Resuscitation[J]. Sensors (Basel), 2021, 21: 4105. doi:  10.3390/s21124105
    [38] Hajeb MS, Cascella A, Valentine M, et al. Deep Neural Network Approach for Continuous ECG-Based Automated External Defibrillator Shock Advisory System During Cardiopulmonary Resuscitation[J]. J Am Heart Assoc, 2021, 10: e019065. doi:  10.1161/JAHA.120.019065
    [39] de Graaf C, Beesems SG, Oud S, et al. Analyzing the heart rhythm during chest compressions: Performance and clinical value of a new AED algorithm[J]. Resuscitation, 2021, 162: 320-328. doi:  10.1016/j.resuscitation.2021.01.003
    [40] Orlob S, Kern WJ, Alpers B, et al. Chest compression fraction calculation: A new, automated, robust method to identify periods of chest compressions from defibrillator data- Tested in Zoll X Series[J]. Resuscitation, 2022, 172: 162-169. doi:  10.1016/j.resuscitation.2021.12.028
    [41] 余明, 袁晶, 张广. 基于机器学习的心肺复苏干扰下心电节律识别算法研究[J]. 中国医疗设备, 2021, 36: 31-34. https://www.cnki.com.cn/Article/CJFDTOTAL-YLSX202106009.htm
    [42] Mayampurath A, Hagopian R, Venable L, et al. Comparison of Machine Learning Methods for Predicting Outcomes After In-Hospital Cardiac Arrest[J]. Crit Care Med, 2022, 50: e162-e172. doi:  10.1097/CCM.0000000000005286
    [43] Harford S, Del Rios M, Heinert S, et al. A machine learning approach for modeling decisions in the out of hospital cardiac arrest care workflow[J]. BMC Med Inform Decis Mak, 2022, 22: 21. doi:  10.1186/s12911-021-01730-4
    [44] Busl KM, Maciel CB. When the heart comes back but the brain is lost-are we ready to predict brain death after cardiac arrest?[J]. Resuscitation, 2022, 179: 256-258. doi:  10.1016/j.resuscitation.2022.09.002
    [45] Kim JW, Ha J, Kim T, et al. Developing a Time-Adaptive Prediction Model for Out-of-Hospital Cardiac Arrest: Nationwide Cohort Study in Korea[J]. J Med Internet Res, 2021, 23: e28361. doi:  10.2196/28361
    [46] Mansour A, Fuhrman JD, Ammar FE, et al. Machine Learning for Early Detection of Hypoxic-Ischemic Brain Injury After Cardiac Arrest[J]. Neurocrit Care, 2022, 36: 974-982. doi:  10.1007/s12028-021-01405-y
    [47] Hirano Y, Kondo Y, Sueyoshi K, et al. Early outcome prediction for out-of-hospital cardiac arrest with initial shockable rhythm using machine learning models[J]. Resuscitation, 2021, 158: 49-56. doi:  10.1016/j.resuscitation.2020.11.020
    [48] Chung CC, Chiu WT, Huang YH, et al. Identifying prognostic factors and developing accurate outcome predictions for in-hospital cardiac arrest by using artificial neural networks[J]. J Neurol Sci, 2021, 425: 117445. doi:  10.1016/j.jns.2021.117445
    [49] Zheng WL, Amorim E, Jing J, et al. Predicting neurological outcome in comatose patients after cardiac arrest with multiscale deep neural networks[J]. Resuscitation, 2021, 169: 86-94. doi:  10.1016/j.resuscitation.2021.10.034
    [50] Al-Dury N, Ravn-Fischer A, Hollenberg J, et al. Identifying the relative importance of predictors of survival in out of hospital cardiac arrest: a machine learning study[J]. Scand J Trauma Resusc Emerg Med, 2020, 28: 60. doi:  10.1186/s13049-020-00742-9
    [51] Chi CY, Ao S, Winkler A, et al. Predicting the Mortality and Readmission of In-Hospital Cardiac Arrest Patients With Electronic Health Records: A Machine Learning Approach[J]. J Med Internet Res, 2021, 23: e27798. doi:  10.2196/27798
    [52] Park JH, Shin SD, Song KJ, et al. Prediction of good neurological recovery after out-of-hospital cardiac arrest: A machine learning analysis[J]. Resuscitation, 2019, 142: 127-135. doi:  10.1016/j.resuscitation.2019.07.020
    [53] Cheng CY, Chiu IM, Zeng WH, et al. Machine Learning Models for Survival and Neurological Outcome Prediction of Out-of-Hospital Cardiac Arrest Patients[J]. Biomed Res Int, 2021, 2021: 9590131. http://www.socolar.com/Article/Index?aid=100090552048&jid=100000009046
    [54] Harford S, Darabi H, Heinert S, et al. Utilizing community level factors to improve prediction of out of hospital cardiac arrest outcome using machine learning[J]. Resuscitation, 2022, 178: 78-84. doi:  10.1016/j.resuscitation.2022.07.006
    [55] Vincelette C, Sokoloff C, Nadon N, et al. Efficacy and cost-feasibility of the Timely Chest Compression Training (T-CCT): a contextualized cardiopulmonary resuscitation training for personal support workers participating during in-hospital cardiac arrests[J]. CJEM, 2021, 23: 180-184. doi:  10.1007/s43678-020-00038-y
    [56] Moll-Khosrawi P, Falb A, Pinnschmidt H, et al. Virtual reality as a teaching method for resuscitation training in undergraduate first year medical students during COVID-19 pandemic: a randomised controlled trial[J]. BMC Med Educ, 2022, 22: 483. doi:  10.1186/s12909-022-03533-1
  • 加载中
计量
  • 文章访问数:  1845
  • HTML全文浏览量:  93
  • PDF下载量:  181
  • 被引次数: 0
出版历程
  • 收稿日期:  2022-12-11
  • 录用日期:  2023-01-29
  • 网络出版日期:  2023-02-16
  • 刊出日期:  2023-05-30

目录

    /

    返回文章
    返回

    【温馨提醒】近日,《协和医学杂志》编辑部接到作者反映,有多名不法人员冒充期刊编辑发送见刊通知,鼓动作者添加微信,从而骗取版面费的行为。特提醒您,本刊与作者联系的方式均为邮件通知或电话,稿件进度通知邮箱为:mjpumch@126.com,编辑部电话为:010-69154261,请提高警惕,谨防上当受骗!如有任何疑问,请致电编辑部核实。谢谢!